• Title/Summary/Keyword: Lean-burn Limit

Search Result 42, Processing Time 0.019 seconds

Analysis of the Initial Combustion Period for the Ultra Lean Burn Engine (초희박연소기관을 위한 초기연소구간의 해석)

  • Han, S.B.;Lee, N.H.;Lee, S.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • 스파크 점화기관에서 화염전파과정에 관한 연구를 수행하기 위하여는, 초기화염핵 구간에서의 화염의 형성과 발달의 거동을 정확히 파악하여야 한다. 그러므로 화염핵의 형성과 발달에 영향을 미치는 최소 화염핵 크기의 이론적인 계산을 수행하였다. 이론식을 정립하기 위하여 열점화 이론을 이용하였다. 최소 화염핵 크기를 계산하기 위해 열전도 계수, 화염온도, 층류연소속도, 기타 열역학적 상태량 등을 계산하였다. 계산에 의존한 화염핵 크기의 신뢰성을 확인하기 위하여, 점화에너지를 변화시킬 수 있는 점화장치를 사용하여 실기 운전을 통하여 희박연소 한계가 그 때의 화염핵이 성정할 수 있는 영역이라고 가정하여 그 정확도를 확인 하였다.

  • PDF

A Study on the Combustion Characteristics and Stratification for Lean Burn of Methanol (The Combust ion Character istics in a IDI Type Constant Volume Combustion Chamber) (메타놀의 희박연소를 위한 혼합기의 성층화와 연소특성에 관한 연구(제 I장 : IDI형 정적연소기에서의 혼합기 연소특성))

  • 박춘근;윤수한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.302-310
    • /
    • 1997
  • In this paper, we find a method to improve ignitability using methanol which is prospective as an alternative fuel. The constant volume combuster is divided into main chamber and sub-cham¬ber. These two chambers are linked by an adapter which is shaped like a cup. We also compare CDI to HIS that is revised in our laboratory for making a scrutiny into the effects of ignition char¬acteristics. Besides, we analyze a flame propagation process in the main and sub-chamber through taking pictures 10, 000 frames per second by high speed camera at the state being fabricated quartz glass aside main and sub-chamber.

  • PDF

Relations Among Discharge Energy, Equivalence Ratio and Turbulent Intensity at a Constant Volume Combustion (정적연소에서 점화에너지와 당량비와 유동과의 관계)

  • 이중순;이태원;이상석;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2308-2315
    • /
    • 1995
  • We studied the effects on the ignitability of mixture, the combustion duration, and the maximum combustion pressure, of various initial combustion factors such as temperature, pressure, and each equivalence ratio in order to identify the combustion characteristics of lean mixture and improve ignitability through the proper control of the ignition energy. It is concluded that there is an optimum turbulent intensity that enables the combustion to have the best ignitability and the shortest duration under each equivalent ratio, and the combustion duration is only dependent upon the distribution and magnitude of discharge energy within the limit of inflammability.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine (직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구)

  • In, Byung-Deok;Park, Sang-Ki;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames (상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구)

  • Moon, Chang-Woo;Park, Jeong;Gwon, O.-Bung;Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

Performance and Emission Characteristics of Compression Ignition Gasoline Engine (압축점화 가솔린기관의 성능 및 배기특성)

  • Kim, Hong-Sung;Kim, Mun-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

A Study on an Improvement of the Ignitability Using the High Frequency Ignition System (고주파점화장치를 사용한 착화성 향상에 관한 연구)

  • Lee, Jung-Sun;Gang, Byeong-Mu;Ha, Jong-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.359-368
    • /
    • 1996
  • For fuel economy and pollutant reduction, the interests in lean burn has increased recently. The purpose of this research is to develop a High Frequency Ignition System (HIS) that can make powerful ignition. We studied relations between performance of HIS and probability of inflammation under various ignition conditions. It is concluded that the portion of capacitance energy to the total energy is comparatively larger and that the optimum spark interval and spark duration are dependent upon conditions of Constant Volume Combustion Chamber.