• Title/Summary/Keyword: Lean burn

Search Result 134, Processing Time 0.024 seconds

A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine (스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

Study of Combustion Characteristics with Compression Ratio Change in Ultra-Lean LPG Direct Injection Engine (압축비 변화에 따른 초희박 직접분사식 LPG엔진의 연소특성 연구)

  • Cho, See Hyeon;Yoon, Jun Kyu;Park, Cheol Woong;Oh, Seung Mook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.837-844
    • /
    • 2014
  • Automotive manufacturers have recently developed various technologies for improving fuel economy and satisfying enhanced emission regulations. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of ignition. A conventional LPG engine has been redesigned to an ultra-lean-burn LPG direct injection engine in order to adopt combustion system of ultra-lean-burn. This study is aimed at investigating the effect of a change in the compression ratio on the performance and emission characteristics of a lean-burn LPG engine. The fuel consumption, heat release rate, combustion pressure, and emission characteristics are estimated depending on changing the effect of compression ratio. When the compression ratio is increased, it is difficult to improve the fuel consumption owing to an unstable combustion state, but the total hydrocarbon and nitrogen oxide emissions are reduced.

Optimization of 150kW Cogeneration Hybrid System (150kW급 열병합발전 하이브리드 시스템 최적화 연구)

  • Choi, Jae-Joon;Kim, Hyuk-Joo;Jung, Dae-Heon;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.340-344
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system using Lean burn engine is up to be optimized because of the large amount of the extra-fuel at the after-burner system. The after-burner system at different concept was applied. The reduction time for the activation temperature of the DeNOx catalyst was achieved by making a hole between the combustor and boiler. Because of the lowered fuel consumption, the lowered temperature level was optimized by blocking the hole of the boiler The optimized cogeneration hybrid system consumes $76Nm^3/h$ LNG to produce 150kW electricity compared to before optimization $103Nm^3/h$ LNG. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10 ppm NOx, 50ppm CO, 25ppm HC. The cogeneration hybrid system can meet the current NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

The Effect of Multi-ignition Strategy on the Combustion and Emission Characteristics in a Ultra Lean Burn GDI Engine (초희박 GDI엔진에서 다단점화에 의한 연소 및 배기 특성)

  • Park, Cheol-Woong;Kim, Sung-Dae;Kim, Hong-Suk;Oh, Hee-Chang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.106-112
    • /
    • 2012
  • Since air pollution problem by emissions from automotive vehicles has become social issues, lean-burn gasoline direct injection (GDI) engine is focused as an alternative to meet the requirement of reinforced emission regulation and improved fuel consumption. Spray-guided type DI combustion is promising technology, which characterized by the centrally mounted injector and closely positioned spark plug, since stable lean combustion can be realized even at ultra-lean mixture condition. In the present study, the effect of multi-ignition with developed charge coil on combustion and emission characteristics was investigated in optical accessible single cylinder engine. In order to fully understand the in-cylinder phenomena and the mechanisms of emission production, optical diagnostics, such as flame visualization was also carried out at frequently using operating condition. Multi-ignition is effective to improve fuel economy but increase NOx emission at flammability limit.

A basic study on ignitor for lean burn (희박연소용 점화장치에 대한 기초연구)

  • Lee, Sang-Jun;Na, Seong-O;Lee, Jong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.36-48
    • /
    • 1997
  • In order to establish the ignition system for lean burn, the influence of the number of spark plug, spark times and spark intervals on discharge pattern of spark energy on ignitability and combustion characteristics were evaluated. It showed that, ignitability remarkably increased with the case of multiple spark ignition system than with the case of single spark and the lean limit extended fuel/air equivalence ratio by 0.1, the increase of magnitude and lasting time of capacity component and inductance component was multi spark discharge in a row.

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

A Study on the Effect of Fast Burn for Different Combustion Chamber Geometries of Gasoline Engine Using an Ion Current Method (이온전류법에 의한 가솔린엔진 연소실 형상별 급속연소효과 연구)

  • 강건용;서승우;정동수;장영준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1633-1639
    • /
    • 1993
  • In spark ignition engine, EGR of lean mixture operation has advantage in emission, but disadvantages in power output and combustion flame propagation. Fast burn system is known to be a useful method to solve these disadvantages. This paper presents the characteristics of in-cylinder flow for different combustion chamber geometries, and the correlation between the in-cylinder flow and the combustion flame speed using an ion current method.

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.