• Title/Summary/Keyword: Lean Mixture Combustion

Search Result 154, Processing Time 0.025 seconds

Mixing and Combustion Characteristics of a CNG and Air according to Fuel Supply Conditions in a DI Engine (직분식 엔진에서 연료공급 조건에 따른 CNG와 공기의 혼합 및 연소특성)

  • Kang, Jeong-Ho;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • It was investigated how fuel injection timing - early injection and later injection - in conjunction with throttle open rate effect the fuel-air mixing characteristics, Engine power, combustion stability and emission characteristics on a DI CNG spark Engine and control system that had been modified and designed according to the author's original idea. It was verified that the combustion characteristics were changed according to fuel injection timings and Engine conditions determined by different throttle open rates and rpm. It was found that the combustion characteristics greatly improved at the complete open throttle rate with an early injection timing and at the part throttle rate with a late injection timing. Combustion duration was governed by flame propagation duration in a late injection timing and by an early flame development duration in an early injection timing. As the result, we discovered that combustion duration is shortened, lean limit is improved, air-fuel mixing conditions controlled, and emissions reduced through control of fuel injection timing according to change of the throttle open rate.

  • PDF

Analysis of Acoustic Excitation Effect on Lean Blowoff in Premixed Bluff Body Flames (예혼합 보염기 화염의 희박 화염 날림에 음향 가진이 미치는 영향에 관한 연구)

  • Jeong, Chanyeong;Hwang, Jeongjae;Yoon, Jisu;Kim, Taesung;Shin, Jeoik;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.149-151
    • /
    • 2014
  • The blowoff phenomenon was experimentally investigated in a ducted combustor according to the acoustic excitation. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. A resonance phenomenon occurs when the excitation frequency approaches the harmonic frequency of the combustor. The resonance increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer. Consequently, the mixture velocity exceeds the burning velocity and the blowoff occurs at the higher equivalence ratio.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF

A Numerical Analysis of the Flow Characteristics in a Lean Premixed Gas Turbine Combustor for Power Generation (발전용 희박예혼합 가스터빈 연소기 내부유동 특성 해석)

  • Chung, Jae-Hwa;Seo, Seok-Bin;Ahn, Dal-Hong;Kim, Jong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.847-852
    • /
    • 2000
  • Three dimensional CFD investigations are carried out to understand the complex flow field in a gas turbine combustor with multi-element fuel injectors. The gas turbine considered here is the GE7FA model which has aye fuel injectors in each combustor can and utilizes lean-premixed combustion to meet nitric oxide emission requirements. Detailed three-dimensional flow characteristics and fuel-air mixture formation process inside the fuel nozzle and gas turbine combustor including five swirl nozzle tips are analyzed using commercial FLUENT code.

  • PDF

A Study on the Kernel Formation & Development for Lean Burn and EGR Engine (희박연소 및 EGR 엔진에서 초기 화염액 생성 및 성장에 관한 연구)

  • 송정훈;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.24-33
    • /
    • 1999
  • This paper investigate the effects of the variations of engine operation condition in the flame kernel formation and developmnet . A model for calculating the initial kernel development in spark ignition engines is formualted. It considered input of electrical energy, combustion energy release and heat transfer to the spark plyg, cylinder head, and unburned mixture. The model also takes into accounts strain rate of initial kernel and residual gas fraction. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy and turbulent flame expansion. Flame kernel development also influenced by engine operating conditions, for example, EGR rate, air-fuel ration and intake manifold pressure.

  • PDF

An Experimental Study on the Self-excited Instabilities in Model Gas Turbine Combustor (모델 가스터빈 연소기내의 자발 불안정성에 관한 실험적 연구)

  • Lee, Min-Chul;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.197-205
    • /
    • 2004
  • Most of gas turbines is operated by the type of dry premixed combustion to reduce NOx emission and economize fuel consumption. However this type operation, combustion induced instability brought failure problems cause by high pressure and heat release fluctuations. Though there has been lots of studies since Lord Rayleigh to understand this instability mechanism and control the instabilities, none of them made matters clear. In order to understand the instability phenomena, a simple experimental study with dump combustor was conducted at the moderate pressure and ambient temperature conditions. From this model gas turbine combustor self-excited instabilities at the resonance mode(200Hz) and bulk mode(10Hz) were occurred and observed at the three points of view; pressure, heat release and equivalence ratio which are acquired by peizo-electric transducer, HICCD camera and acetone LIF respectively. From this results we could see the instability mechanism clear with the account of time scale analysis which explained by the propagation of pressure wave to the upward of mixture stream and convectional transfer of the equivalence ratio fluctuation by this pressure fluctuation.

  • PDF

A fundamental study of hydrogen supplemented natural gas vehicle to meet ULEV (저공해 수소첨가 천연가스차량 개발을 위한 기초연구)

  • Kim, Bong-Seok;Lee, Yeong-Jae;Ryu, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.358-370
    • /
    • 1997
  • In the present study, investigations were carried out to obtain data on combustion characteristics of methane gas and hydrogen supplemented methane gas in a constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The maximum combustion pressure increases as the initial pressure and hydrogen supplement rate increase, the total burning time is shorten by lowering the initial pressure and by increasing the hydrogen supplement rate. The maximum flame temperature and NO concentration increase by the initial pressure and hydrogen supplement rate increase. The flame propagation processes in near stoichiometric mixture are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate.

Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine (2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성)

  • Kook, Sang-Hoon;Park, Cheol-Woong;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

A Study on the Spontaneous Ignition of the Fuel Injected into a Hot Air Stream - Part III : Measurement of Flaming Duration, Effects of Auxiliary-Fuel Injection-Timing and Turbulence on Shortening the Ignition Delay Period - (高溫空氣流에 噴射한 噴霧의 自然燃燒에 관한 硏究 - 제3보: 분무의 연소기간 측정, 보조연료의 분사시간 및 난류가 분무의 착화지정기간 단축에 미치는 영향 -)

  • 방중철;태전간랑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 1986
  • On the hypothesis that the unstable intermediates yield by the pre-reaction of auxiliary fuel become an initiator or an explosive center which promotes the chain reaction of main fuel, various organic compounds below $C_{10}$ are injected as an auxiliary fuel prior to main injection. In the previous papers, the effects of the auxiliary fuel additions on the ignition delay period, the stability of flame, the NO concentrations in their exhaust gases have been investigated. In the present paper, to confirm where the most suitable location of lean pre-mixture for the combustion of main fuel is, and how the lean pre-mixture is contacted with main fuel, the effects of the injection timing of auxiliary fuel and the turbulence on combustion processes are investigated. Moreover, from the schlieren and color photographs of flame in the combution field, it could be found that the ignition nuclei are formed in a wider region of main spray, and that these ignition nuclei promote the development of flame, which results in the reduction of flaming duration.

ANALYSIS OF HCCI COMBUSTION CHARACTERISTICS BASED ON EXPERIMENTATION AND SIMULATIONS-INFLUENCE OF FUEL OCTANE NUMBER AND INTERNAL EGR ON COMBUSTION

  • Iijima, A.;Yoshida, K.;Shoji, H.;Lee, J.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.137-147
    • /
    • 2007
  • Homogenous Charge Compression Ignition (HCCI) combustion systems can be broadly divided for the process applied to 4-stroke and 2-stroke engines. The former process is often referred to as simply HCCI combustion and the latter process as Active Thermo-Atmosphere Combustion (ATAC). The region of stable engine operation tends to differ greatly between the two processes. In this study, it was shown that the HCCI combustion process of a 4-stroke engine, characterized by the occurrence of autoignition under a high compression ratio, a lean mixture and wide open throttle operation, could be simulated by operating a 2-stroke engine at a higher compression ratio. On that basis, a comparison was made of the combustion characteristics of high-compression-ratio HCCI combustion and ATAC, characterized as autoignited combustion in the presence of a large quantity of residual gas at a low compression ratio and part throttle. The results showed that one major difference between these two combustion processes was their different degrees of susceptibility to the occurrence of cool flame reactions. Compared with high-compression-ratio HCCI combustion, the ignition timing of ATAC tended not to change in relation to different fuel octane numbers. Furthermore, when internal EGR was applied to high-compression-ratio HCCI combustion, it resulted in combustion characteristics resembling ATAC. Specifically, as the internal EGR rate was increased, the ignition timing showed less change in relation to changes in the octane number and the region of stable engine operation also approached that of ATAC.