• Title/Summary/Keyword: Lean Burn Mixture

Search Result 46, Processing Time 0.021 seconds

A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge (균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구)

  • 이내현;유철호;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

Effects of Mixture Flow and Ignition Characteristics on the Engine Performance (혼합기의 유동과 점화특성이 기관성능에 미치는 영향)

  • 이중순;김진영;정성식;하종률;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.37-44
    • /
    • 1998
  • Lean burn combustion is an important concept for improving the fuel consumption and exhaust emissions. However, the lean burning is associated with increased cycle-to-cycle combustion variations due to the ignition instabilities and redu- ced flame propagation rates. Engine stability under lean mixture conditions could be improved by increasing flame speed through enhanced flow characteristics and by securing ignitability with improvement of ignition systems. The effects of flow motion and ignition characteristics on the combustion performances were investigated in a 4-valve SI engine. Flow motions of tumble-swirl were varied with a swirl control valve attached at the inlet ports, while ignition energy and its distribution were controlled in a high -frequency ignition system by changing spark duration and spark frequency. The improvement of lean burn performance by the optimum flow motion and ignition characteristics is discussed.

  • PDF

Effect of Fuel Injector-type Spark Plug on Combustion Characteristics

  • Yeom, J.K.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2009
  • This study proposes a new stratified charge system for low emission and ultra lean burn. In order to examine combustion characteristics of the new system, sparkplug with a hole at positive pole and a common CNG injector for injecting fuel were used in this study as injector-type spark plug. The new stratified charge system injects fuel of extremely small quantities and ignites mixture around sparkplug gap. Also, the system was fitted in a visualized constant volume chamber. Then, for analysis of the combustion characteristics, we examined combustion pressure, lean inflammable limit, and visualized combustion flame according to equivalence ratio by comparison with homogeneous charge (HC) method and the new stratified charge (SC) method. As results of this study, in the case of using this system, the propagation speed of initial flame was increased and total combustion period was reduced in the ultra lean burn in the same equivalence ratio. These phenomena occurred clearly under the conditions of lean equivalence ratio. Furthermore, the lean inflammable limit of mixture was extended by using the injector-type spark plug.

  • PDF

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

A Study on the Mixture Formation and Combustion Characteristics in Lean Burn Engine (희박연소기관의 혼합기형성 및 연소특성에 관한 연구)

  • 이창식;서영호;조행묵;김현정
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.80-86
    • /
    • 1996
  • In order to decrease fuel comsumption rate and emissions, lean burn engine which has equipped swirl control valve, is investigated experimentally on the test bench. Single cylinder engine was used to test the combustion and emission performance with 4 kinds of swirl valve. Decrease in the carbon monoxide, hyerocarbon and specific fuel consumption was shown at the lean condition, which means that a good choice of swirl valve on the given intake port geometry can be used to increase the combustion efficiency and lean limit.

  • PDF

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.

Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine (직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교)

  • Cho, Seehyeon;Park, Cheolwoong;Oh, Seungmook;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

Comparison of NOx Reduction Characteristics of NOx Storage Catalyst and TWC for Lean-burn Natural Gas Vehicles (희박 천연가스 자동차용 NOx 흡장촉매와 TWC의 NOx 반응특성 비교)

  • 최병철;정우남;이춘희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.79-84
    • /
    • 2004
  • We evaluated the reduction performance of NOx storage catalyst and TWC for lean-burn natural gas engine by the model gas. The method of unsteady state reaction was used to compare with reduction performances of NOx storage catalyst and TWC. It was found that the effective parameter was rich spike duration, temperature of the model gas. In the presence of $CO_2$ and $H_2O$ in the reaction mixture was decreased the NOx reduction performance.