• 제목/요약/키워드: Leakage Rates

검색결과 216건 처리시간 0.03초

Reynolds Number Effect on Regenerative Pump Performance in Low Reynolds Number Range

  • Horiguchi, Hironori;Yumiba, Daisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.101-108
    • /
    • 2008
  • The effect of Reynolds number on the performance of a regenerative pump was examined in a low Reynolds number range in experiment. The head of the regenerative pump increased at low flow rates and decreased at high flow rates as the Reynolds number decreased. The computation of the internal flow was made to clarify the cause of the Reynolds number effect. At low flow rates, the head is decreased with increasing the Reynolds number due to the decrease of the shear force exerted by the impeller caused by the increase of leakage and hence local flow rate. At higher flow rates, the head is increased with increasing the Reynolds number with decreased loss at the inlet and outlet as well as the decreased shear stress on the casing wall.

가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구 (Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test)

  • 김성우;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

Computational Study of Magnetically Suspended Centrifugal Blood Pump (The First Report: Main Flow and Gap Flow)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.102-112
    • /
    • 2010
  • Artificial heart pumps have attracted the attention of researchers around the world as an alternative to the organ used in cardiac transplantation. Conventional centrifugal pumps are no longer considered suitable for long-term application because of the possibility of occurrence of blood leakage and thrombus formation around the shaft seal. To overcome this problem posed by the shaft seal in conventional centrifugal pumps, the magnetically suspended centrifugal pump has been developed; this is a sealless rotor pump, which can provide contact-free rotation of the impeller without leading to material wear. In Europe, clinical trials of this pump have been successfully performed, and these pumps are commercially available. One of the aims of our study is to numerically examine the internal flow and the effect of leakage flow through the gap between the impeller and the pump casing on the performance of the pump. The results show that the pressure head increases compared with the pump without a gap for all flow rates because of the leakage of the fluid through the gap. It was observed that the leakage flow rate in the pump is sufficiently large; further, no stagnant fluid or dead flow regions were observed in the pump. Therefore, the present pump can efficiently enhance the washout effect.

Performance-based Evaluation for Efficiency of Landfill Liner Systems

  • Nguyen, The Bao;Lee, Chul-Ho;Lee, Jong-Sun;Choi, Hang-Seok
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.245-254
    • /
    • 2009
  • Efficiency of landfill liners system is usually evaluated based on leakage rate and mass flux. In this study, composite liner systems including the GCL(geosynthetic clay liner) composite liner, the Subtitle D liner, the Wisconsin NR500 liner, and the recently utilized double composite liner, which is a combination of the GCL composite liner and Subtitle D-type liner, have been examined. The leakage rate through circular and long defects in the geomembrane (GM) of the liner system was analyzed with the aids of analytical and numerical methods. For the mass flux criterion, contaminant transport through defects in the GM of landfill liners can be evaluated based on the calculated leakage rates. The diffusion rate of volatile organic compounds through intact landfill liners was evaluated by performing a one-dimensional numerical model. Cadmium and toluene were adoptted in the analyses as typical inorganic and organic substances, respectively, which will be chemical species encountered during landfill operation. The performance-based evaluation indicates that the double composite liner systems are superior to the other types of liner.

  • PDF

유량에 따른 축류홴의 익단누설와류 및 후류 특성 (Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 김광용;장춘만
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

개방형 원심회전차의 내부유동장에 관한 실험적 연구(2)-유량에 따른 영향- (Experimental Study on Flows within an Unshrouded Centrifugal Impeller Passage(II)-on the Influence of Flow Rate-)

  • 김성원;조강래
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3251-3261
    • /
    • 1996
  • Flows were measured in an unshrouded centrifugal impeller. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes between the inlet and outlet of the impeller rotating at 700 rpm, which diameter is 0.39 meter, and the static pressures and the slip factor at the impeller outlet were estimated from the measured values. Measurements were made for three flow rates corresponding to zero incidence and two others with the greater and the smaller one than zero. From the measured data in these flow rates, the followings were investigated in the impeller passage, the variation of the primary and secondary flows, the leakage flows, the wake's position and its size, the static pressure rise and the loss production mechanism. Furthermore the static pressure and the slip factor were compared with the results of inviscid Quasi-3D calculation.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.193-201
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.