• Title/Summary/Keyword: Leakage Loss

Search Result 612, Processing Time 0.042 seconds

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Evaluation of Flowfield and Flow Losses insied Axial Turbomachinery Using Numerical Calculation [Evaluation of Tip Leakage Loss and Reduction of Efficiency by Tip Clearance] (수치계산에 의한 축류터보기계의 유동장과 유동온실의 평가 III [회전차 익말단의 누설손실과 효율저하에 대한 평가])

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.240-247
    • /
    • 1998
  • Leakage vortices formed near blade tip causes an increase of total pressure loss near casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the less distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and aprroximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

Effects of the Inlet Boundary Layer Thickness on the Loss Mechanism in an Axial Compressor (입구 경계층 두께가 축류 압축기 손실에 미치는 영향)

  • Choi, Minsuk;Baek, Jehyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.419-426
    • /
    • 2004
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the loss mechanism in a low-speed axial compressor operating at the design condition(${\phi}=85\%$) and near stall condition(${\phi}=65\%$). At the design condition, the flow phenomena such as the tip leakage flow and hub comer stall are similar independent of the inlet boundary layer thickness. However, when the axial compressor is operating at the near stall condition, the large separation on the suction surface near the casing is induced by the tip leakage flow and the boundary layer on the blade for thin inlet boundary layer but the hub corner stall is enlarged for thick inlet boundary layer. These differences of internal flows induced by change of the boundary layer thickness on the casing and hub enable loss distributions of total pressure to be altered. When the axial compressor has thin inlet boundary layer, the total pressure loss is increased at regions near both casing and tip but decreased in the core flow region. In order to analyze effects of inlet boundary layer thickness on total loss in detail, using Denton's loss models, total loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.

  • PDF

A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique (다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Do-Hyeong;Lee, Sang-Gok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

Effect of Leakage on the Noise Reduction Characteristics of Helmholtz Resonator (누출이 헬름홀츠 공명기의 소음저감 특성에 미치는 영향)

  • Lee, Il-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.634-640
    • /
    • 2009
  • Helmholtz resonator has been used, especially in intake and exhaust systems of vehicles, due to its good noise reduction characteristics at low frequencies. Many approaches have been developed to predict the acoustic behavior of the resonator with the assumption that there is no leakage from the resonator. However, its behavior may be affected by leakage which may exist in manufacturing processes or on purpose. This study investigates the effect of leakage on the noise reduction characteristics of Helmholtz resonator with two practical examples. One is a resonator with a gap between baffle and housing of the resonator and the other one is a resonator with two drain holes on the baffle. The measured transmission loss shows that the resonance frequencies are considerably shifted to higher frequency due to the leakage. The Boundary Element Method was applied to predict the transmission loss of the Helmholtz resonator with drain holes. The comparison between the measured and predicted transmission loss shows that the acoustic impedance of the holes is essential for accurate predictions of the transmission loss.

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (III) - Evaluation of Tip Leakage Loss and Reduction of Efficiency near Blade Tip Clearance Region of a Rotor - (축류 회전차 익말단 틈새유동에 대한 수치해석 (III) - 회전차 익말단의 누설손실과 효율저하에 대한 평가 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1113-1120
    • /
    • 1999
  • Leakage vortices fonned near the blade tip cause an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and the of attack on the leakage vortex and overall performance, and the los9 distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss due to the tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency due to the tip leakage flow.

Phase Shift Full Bridge Converter for Sever Power using a New Separated Leakage Inductor Winding (SLW) Method

  • Cho, Kyu-Min;Kim, Young-Do;Cho, In-Ho;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.517-519
    • /
    • 2008
  • A new transformer winding method is proposed in this paper. Generally, PWM ZVS topologies use a leakage inductor to achieve ZVS operation. However, the leakage inductance of the transformer is not often enough to meet ZVS condition. Therefore, an additional leakage inductor is necessary, which causes large core loss because high input voltage is applied to the additional leakage inductor during a short commutation period. In this paper, a new separated leakage inductor winding (SLW) method is proposed. With the proposed winding method, a leakage inductor and a transformer can be combined in one ferrite core. Therefore, size and core loss of the additional leakage inductor can be reduced. Experimental results demonstrate that the proposed winding method can achieve a significant efficiency improvement in a 1210.8W (12V, 100.9A) prototype converter.

  • PDF

A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter (DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

Method applied to evaluate heat leakage of cryogenic vessel for liquid hydrogen

  • Li, Zhengqing;Yang, Shengsheng;Wang, Xiaojun;Yuan, Yafei
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.1
    • /
    • pp.7-11
    • /
    • 2021
  • Cryogenic vessels are special equipment that requires periodic evaluation of their thermal insulation performance. At the current standard, the test is considered as the loss product or heat leakage of cryogenic vessel, which takes over 72 h to evaluate; consequently, a large amount of working medium is discharged to the environment in the process. However, hydrogen is flammable and explosive, and the discharged gas may be dangerous. If liquid hydrogen is replaced with liquid nitrogen before testing, the operation then becomes complicated, and the loss product or heat leakage cannot respond to the thermal insulation performance of cryogenic vessels for liquid hydrogen. Therefore, a novel method is proposed to evaluate the heat leakage of cryogenic vessels for liquid hydrogen in self-pressurization. In contrast to the current testing methods, the method proposed in this study does not require discharge or exchange of working medium in all test processes. The proposed method is based on one-dimensional heat transfer analysis of cryogenic vessels, which is verified by experiment. When this method is used to predict the heat leakage, the comparison with the experimental data of the standard method shows that the maximum error of heat leakage is less than 5.0%.