• Title/Summary/Keyword: Leak Detector

Search Result 43, Processing Time 0.022 seconds

Performance and Reliability Characteristics of the Free Piston Free Displacer Stirling Cryocooler

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Koh, Deuk-Yong;Kim, Yang-Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents the results of a series of performance and reliability tests for the Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate specification for the performance and reliability. FPFD Stirling cryocooler is currently under development for cooling infrared detector. Manufactured Stirling cryocooler delivers approximately 0.9W cooling at 80K for 30W∼40W of input power. It takes approximately 2 minutes to cool down to 80K at the ambient temperature of 23$^{\circ}C$. Performance characteristics for the vibration, acoustic noise, EMI and leak rate of the Stirling cryocooler are evaluated. We performed low and high temperature keeping test from -32$^{\circ}C$ to +52$^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooling capacity is determined as a function of the temperatures at the compressor, hot end and cold tip at the expander. Finally, we describe the experimental facility for the MTTF evaluation and some typical results of the Stirling cryocooler.

A Study on the Quantitative Process Facility Standards that Require H2S Toxic Gas Detectors and Location Selection for Emergency Safety (H2S 독성가스감지기가 필요한 정량적 공정설비 기준 및 비상시 안전을 위한 위치선정 방안에 대한 연구)

  • Choi, Jae-Young;Kwon, Jung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Design techniques for minimizing the damage caused by leakage of $H_2S$ gas, contained in natural gas and petroleum, have been widely studied abroad in chemical plants that purify and process natural gas and petroleum. However, there is no domestic engineering practice and regulation of $H_2S$. In accordance with the circumstances, this study proposes the quantitative criteria of process equipment to install $H_2S$ toxic gas detector as 500 ppm and explains the valid basis. The $H_2S$ gas dispersion radius up to IDLH 100 ppm is calculated by ALOHA under previous $H_2S$ gas leak accident scenario. The weather conditions of modeling include the conditions of Ulsan, Yeosu and Daesan, the three major petrochemical complexes in Korea. The long radius up to 100 ppm was derived in order of Ulsan, Daesan, Yeosu. For emergency safety the dispersion radius up to 100 ppm of the $H_2S$ gas obtained in this study should be extended to apply the additional $H_2S$ toxic gas detector, and local climate conditions should be considered.

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.

Development of Performance Verification Method for Components of IoT-based Industrial Valve Safety Management System (IoT 기반 산업용 밸브 안전관리 시스템 구성장치의 성능검증 방안 개발)

  • Kim, Jae-Ok;Lyu, Geun-Jun;Lee, Kyung-Sik;Kim, Jung-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.10-19
    • /
    • 2020
  • Valve leak accidents in petrochemistry plants and gas utilities cause human and property damage. The main reason why happen gas inhalation, poisoning, fire and explosion accidents is gas valve leakage. To prevent gas leakage, inspectors check the facilities in the field. And they are at risk of gas leak accidents. So we applied IoT-based risk assessment, monitoring and automatic control system. It can detect both internal and external gas leakage, do real-time monitoring of industrial valve in the plant by using hybrid sensor. As the new safety management system for industrial valve is developed, it needs method to evaluate device performance and environmental components for the system. This study is about development of method to verify performance of the explosion-proofed hybrid sensing system include gas detector and optical fiber sensor supporting wire and wireless communication.

A Study on Optimal Operation for Flare systems (플레어 시스템의 최적 운영방안에 대한 연구)

  • Song, Bang-Un;Bok, Hyeong-Jun;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2019
  • Most oil refineries and chemical plants have flare systems designed to mitigate pressure rises in process facilities in case of emergencies that require the release of large amounts of gas due to sudden process shutdowns such as power outages. However, the rise of the flame of the flare system causes civil complaints from residents around the factory due to visible pollution, and economic loss occurs in the company, which requires constant management. In this study, two items were diagnosed and analyzed in order to derive the optimal operation method of flare system. First, to detect the cause of the rise in flame height, the acoustic leak detector was used to check gas leaks in safety valves and pressure control valves. Second, to identify the cause of flame instability, the pulsation phenomenon was diagnosed through the CFD simulation and modeling experiments of the sealing drum. By confirming the leak at 4.3% of the safety valve and 10% of the pressure control valve, the cause of abnormal sparking was derived. The information presented in this study can be easily applied to any company that has a flare system, and is expected to prevent complaints and product loss.

Design and Implementation of an Intrusion Detection System based on Outflow Traffic Analysis (유출트래픽 분석기반의 침입탐지시스템 설계 및 구현)

  • Shin, Dong-Jin;Yang, Hae-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.131-141
    • /
    • 2009
  • An increasing variety of malware, such as worms, spyware and adware, threatens both personal and business computing. Remotely controlled bot networks of compromised systems are growing quickly. This paper proposes an intrusion detection system based outflow traffic analysis. Many research efforts and commercial products have focused on preventing intrusion by filtering known exploits or unknown ones exploiting known vulnerabilities. Complementary to these solutions, the proposed IDS can detect intrusion of unknown new mal ware before their signatures are widely distributed. The proposed IDS is consists of a outflow detector, user monitor, process monitor and network monitor. To infer user intent, the proposed IDS correlates outbound connections with user-driven input at the process level under the assumption that user intent is implied by user-driven input. As a complement to existing prevention system, proposed IDS decreases the danger of information leak and protects computers and networks from more severe damage.

A Study on the Development of a Fire Extinguishing Agent Leakage Monitoring Module and its Performance Assessment (소화약제 누기 감시장치의 모듈개발 및 성능검증에 관한 연구)

  • Son, Bong-Sei;Hong, Sung-Ho;Go, A-Ra
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • One of the main problems with gaseous fire extinguishers is the decrease in fire suppression capability due to the leakage of the fire extinguishing agents, either naturally or caused by obsolete equipment. Therefore, in this study, a real-time detector module for monitoring pressure leakages was developed and an assessment on its performance was carried out. Currently, there are no domestic or global standards for testing pressure leakage detection systems. Therefore, similar global standards, such as ISO 7240 and FM 1421, and the domestic law on "Receiver type-approval and technical standards for product inspection" were used as a reference for assessing the performance of the newly developed module. Its basic performance was assessed by applying compressed air to the module, and, as a result, the minimum working pressure was identified as 0.3 bar. Its environmental qualification was carried out to confirm the proper functioning of the module in different climates and the module was confirmed to function properly at both high ($50^{\circ}C$) and low ($-10^{\circ}C$) temperatures.

Thoracic EndoVascular Stent Graft Repair for Aortic Aneurysm

  • Kim, Joung-Taek;Yoon, Yong-Han;Lim, Hyun-Kyung;Yang, Ki-Hwan;Baek, Wan-Ki;Kim, Kwang-Ho
    • Journal of Chest Surgery
    • /
    • v.44 no.2
    • /
    • pp.148-153
    • /
    • 2011
  • Background: The number of cases employing thoracic endovascular aortic repair (TEVAR) has been increasing due to lower morbidity and mortality compared to open repair technique. The aim of this study is to evaluate the outcome of TEVAR for thoracic aortic diseases. Materials and Methods: Sixteen patients underwent TEVAR from October 2003 to April 2010. Mean age at operation was 59 years (20~78 years), and 11 were male. Indications for TEVAR were large aortic diameter (>5.5 cm) upon presentation in 6 patients, increasing aortic diameter during the follow-up period in 4, traumatic aortic rupture in 3, persistent chest pain in 2, and ruptured aortic aneurysm in one. The mean diameter, length and the number of the stents were 33 mm (26~40 mm), 12 cm (9.5~16.0 cm), and 1.25 (1~2), respectively. Aortography employing Multi-detector computerized tomography (MDCT) technique was performed at one week, and patients were followed up in the out-patient department at one month, 6 months, and one year postoperatively. Results: Primary technical success showing complete exclusion of the aneurysm was achieved in 15 patients. One patient showed a small endo-leak (type 1). Four patients developed perioperative stroke: Three recovered without sequelae, and one showed mild right-side weakness. There was no operative mortality. Diameter of the thoracic aorta covered by stent graft changed within 10% range in 12 patients, decreased by more than 10% in 3, and increased by more than 10% in one during mean follow-up duration of 18 months (1~73 months). There was no recurrence-related death during this period. Conclusion: Intermediate-term outcome after TEVAR was encouraging. Indications for TEVAR could be extended for other thoracic aortic diseases.

Development of Methane Gas Leak Detector by Short Infrared Laser (단적외선 레이저를 이용한 메탄가스 누출 검지 장비 개발)

  • Young Sam Baek;Jung Wan Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • Due to the development of industry and improvement of living standards, the amount of natural gas used in the world is constantly increasing, and related industrial facilities such as power plants, storage facilities, and supply pipelines are constantly increasing. Natural gas is a convenient and clean fuel that does not pollute the environment, but in the event of an accident due to leakage, it can cause human casualties, large-scale property damage, and negative effects on the global warming effect. In addition to the severe penalties under the Severe Disaster Punishment Act, it is necessary to ensure safety. Therefore, by applying the principle of laser-based absorption spectroscopy, we developed a long-range portable methane leakage gas detection system that can detect the concentration of methane leaking from a distance of up to 30 meters and verified its effectiveness.