• Title/Summary/Keyword: Leaf phenology

Search Result 38, Processing Time 0.025 seconds

Effects of Elevated CO2 Concentration on Leaf Phenology of Quercus acutissima (이산화탄소 농도 증가가 상수리나무 잎의 계절현상에 미치는 영향)

  • Seo, Dong-Jin;Oh, Chang-Young;Han, Sim-Hee;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • Effects of elevated $CO_2$ on leaf phenology of Quercus acutissima were examined using open-top chambers, which had ambient and elevated $CO_2$ concentrations (ambient ${\times}1.4$, ambient ${\times}1.8$). To analyze the effect of chamber, non-treatment block was established near outside of the chambers. In 2013, budburst, leaf unfolding, coloring, and shedding were surveyed, and spring phenology was surveyed in 2014. Thermal sum (base temperature $+5^{\circ}C$) of each phenological event occurred was recorded. In addition, bud samples were collected and analyzed for carbohydrate contents in March 2014. Elevated $CO_2$ concentration advanced budburst and leaf unfolding, and delayed shedding in 2013. However, in 2014, the temperature of the spring season was high, and there was no significant effect of elevated $CO_2$ concentration on spring phenology. Carbohydrates content, such as starch, total non-structural carbohydrate and total soluble sugar, were significantly increased in response to elevated $CO_2$ concentration. It has been proposed that elevated $CO_2$ concentration could extend the growing season of temperate species with increased possibility of frost damage due to early bud opening and leaf unfolding. However, our analysis showed that the increased carbohydrate concentration in bud under elevated $CO_2$ would reduce the possibility of early spring frost damage by acting as cryoprotectant.

Plant Phenology of Threatened species for Climate change in Sub-alpine zone of Korea - Especially on the Summit Area of Mt. Deogyusan - (한반도 아고산지대내 기후변화 취약식물종의 식물계절성 변화 연구 - 덕유산 정상 지역을 중심으로 -)

  • Kim, Hyuk-Jin;Hong, Jeong-Ki;Kim, Sang-Chul;Oh, Seung-Hwan;Kim, Joo-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.549-556
    • /
    • 2011
  • We investigated the plant phenology on the threatened species for climate change in the summit area of Mt. Deogyusan which is a representative sub-alpine zone in Korea. We had performed the monitoring survey of plant phenology on 38 species including 20 trees and 18 herbs from May 2009 to November 2010. The investigated phenological charateristics were five dates for leafing, flowering, floral abscission, autumn leaf colors and leaf abscission on each plant species in sub-alpine region. The climate data were measured from November 2009 to December 2010. The range of temperature was from 30.4 to -$20.3^{\circ}C$ at Hyangjeokbong to Jungbong region, and the relative humidity was 100% to 3.4%. The leafing dates in 2010 were similar to 2009 or were 6-20 days delayed in most of the investigated species except Veratrum oxysepalum and Sanguisorba hakusanensis which showed 8 days earlier leafing dates in 2010. The biggest difference among phenological characters was found in flowering dates. The flowering dates of early Spring blooming species such as Heloniopsis koreana, Rhododendron yedoense for. poukhanense and Viola orientalis showed 13-20 days earlier in 2010, and the several summer flowering species as Viburnum opulus var. calvescens, Smilacina japonica and Bupleurum longeradiatum showed 6-10 days delay in 2010. The dates for floral abscission and autumn leaf colors in 2010 were delayed about 10-18 days, and leaf abscission dates were similar to 2009. The effects of climate change on the phenology for the threatened species in sub-alpine zones of Korea are occuring especially on flowering, floral abscission and autumn leaf colors.

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.

Relationship between Plastochrone and Development Indices Estimated by a Nonparametric Rice Phenology Model

  • Lee, Byun-Woo;Nam, Taeg-Su;Yim, Young-Seon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.149-153
    • /
    • 1999
  • Prediction of rice developmental stage is necessary for proper crop management and a prerequisite for growth simulation as well. The objectives of the present study were to find out the relationship between the plastochrone index(PI) and the developmental index(DVI) estimated by non-parametric phenology model which simulates the duration from seedling emergence(DVI=0) to heading(DVI=l) by employing daily mean air temperature and daylength as predictor variables, and to confirm the correspondency of developmental indice to panicle developmental stages based on this relationship. Four japonica rice cultivars, Kwanakbyeo, Sangpungbyeo, Dongjinbyeo, and Palgumbyeo which range from very early to very late in maturity, were grown by sowing directly in dry paddy field five times at an interval of two weeks. Data for seedling emergence, leaf appearance, differentiation stage of primary rachis branch and heading were collected. The non-parametric phenology model predicted well the duration from seedling emergence to heading with errors of less than three days in all sowings and cultivars. PI was calculated for every leaf appearance and related to the developmental index estimated for corresponding PI. The stepwise polynomial analysis produced highly significant square-rooted cubic or biquadratic equations depending on cultivars, and highly significant square-rooted biquadratic equation for pooled data across cultivars without any considerable reduction in accuracy compared to that for each cultivar. To confirm the applicability of this equation in predicting the panicle developmental stage, DVI at differentiation stage of primary rachis branch primordium was calculated by substituting PI with 82 corresponding to this stage, and the duration reaching this DVI from seedling emergence was estimated. The estimated duration revealed a good agreement with that observed in all sowings and cultivars. The deviations between the estimated and the observed were not greater than three days, and significant difference in accuracy was not found for predicting this developmental stage between those equations derived for each cultivar and for pooled data across all cultivars tested.

  • PDF

Onset Date of Forest Canopy Detected from MODIS Leaf Area Index

  • Kim, So-Hee;Kang, Sin-Kyu;Lim, Jong-Hwan
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • The timing of the canopy phenology onset (CPO hereafter) indicates the initiation of the growing season, with rapid increases in exchange rates of carbon dioxide and water vapor between vegetation and atmosphere. The CPO is regarded as a potential indicator of ecosystem responses to global warming, but the CPO shows considerable spatial variation depending on the species composition and local temperature regime. at a given geographic location. In this study, we evaluated the utility of satellite observation data for detection of the timing of the CPO. Leaf area indices (LAI) obtained from the Moderate Resolution Imaging Spectrora-diometer (MODIS) were utilized to detect and map the onset dates from 2001 to 2006. The reliability of MODIS-based onset dates was evaluated with ground measured cherry blossom flowering data from national weather stations. The MODIS onset dates preceded the observed flowering dates by 8 days and were linearly related with a correlation coefficient of 0.58 (p < 0.05). In spite of the coarse spatial (1 km) and temporal (8 days) resolutions of MODIS LAI, the MODIS-based onset dates showed reasonable ability to predict flowering dates.

Estimation of Onion Leaf Appearance by Beta Distribution (Beta 함수 기반 기온에 따른 양파의 잎 수 증가 예측)

  • Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Kim, Byeong Hyeok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 2022
  • Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.

Phenological Studies of Deciduous Trees in the Cool Temperate Region of Japan

  • Jun, Kala;Hayashi, Ichiroku
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.193-200
    • /
    • 2008
  • We obtained quantitative information on leaf unfolding and leaf shedding by observing 45 species of cool temperate deciduous trees in an arboretum over 5 growing seasons. These trees were in leaf (the foliage period) for 207 days on average after 1 April; 50% of leaves had been shed by 192 days after 1 April. Duration from the start of leaf unfolding to 50% leaf shedding was 157 days on average. Leaf unfolding began 35 days on average after 1 April. For leaf unfolding to begin, a$ 51^{\circ}C{\cdot}day$ of cumulated daily mean air temperature above $5^{\circ}C$ from 1 January (modified Kira's warmth index) was needed. Fifty-nine days elapsed between initiation and the final stage of leaf unfolding. The period of net photosynthetic assimilation was 157 days. The species with succeeding- type leaf unfolding associated with the anemochore seed type dominated the early stage of succession, while the species with flush-type leaf unfolding tended to dominate the late stage of succession. Few species were found in regions where late frosts occur after the day when the cumulative temperature for leaf unfolding is achieved. Biological characteristics include time of leaf unfolding, which affects the life history of each species, so that each species occupies its own niche in the stand. We conclude that that leaf phenology, such as timing of leaf unfolding and leaf shedding, is one of the components of each species' ecological characteristics.

Intraspecific Variation in Leaf Life Span for the Semi-evergreen Liana Akebia trifoliata is Caused by Both Seasonal and Aseasonal Factors in a Temperate Forest

  • Kohei, Koyama;Kikuzawa, Kihachiro
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.207-211
    • /
    • 2008
  • We investigated the leaf demography of a temperate woody liana, Akebia trifoliata, in a temperate forest in Japan, Akebia is semi-evergreen: some leaves are shed before winter, while others remain through the winter. Previous studies of semi-evergreen species found that variation in leaf life span was caused by variation in the timing of leaf emergence, Leaves that appeared just before winter over-wintered, while leaves appearing earlier were shed, However, it is unclear whether leaves of the same cohort (i.e., leaves that appear at the same time within a single site) show variation in life span under the effect of strong seasonality. To separate variation in life span among the leaves in each cohort from variation among cohorts, we propose a new method - the single leaf diagram, which shows the emergence and death of each leaf. Using single leaf diagrams, our study revealed that Akebia leaves within a cohort showed substantial variation in life span, with some over-wintering and some not. In addition, leaves on small ramets in the understory showed great variation in life span, while leaves on large ramets, which typically reach higher positions in the forest canopy, have shorter lives, As a result, small ramets were semi-evergreen, whereas large ramets were deciduous, The longer lives of leaves on small ramets can be interpreted as a shade-adaptive strategy in understory plants.

Plant Architecture and Flag Leaf Morphology of Rice Crops Exposed to Experimental Warming with Elevated CO2

  • Vu, Thang;Kim, Han-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • Projected increases in atmospheric $CO_2$ concentration ([$CO_2$]) and temperature ($T_a$) have the potential to alter in rice growth and yield. However, little is known about whether $T_a$ warming with elevated [$CO_2$] modify plant architecture. To better understand the vertical profiles of leaf area index (LAI) and the flag leaf morphology of rice grown under elevated $T_a$ and [$CO_2$], we conducted a temperature gradient field chamber (TGC) experiment at Gwangju, Korea. Rice (Oryza sativa L. cv. Dongjin1ho) was grown at two [$CO_2$] [386 (ambient) vs 592 ppmV (elevated)] and three $T_a$ regimes [26.8 ($\approx$ambient), 28.1 and $29.8^{\circ}C$] in six independent field TGCs. While elevated $T_a$ did not alter total LAI, elevated [$CO_2$] tended to reduce (c. 6.6%) the LAI. At a given canopy layer, the LAI was affected neither by elevated [$CO_2$] nor by elevated $T_a$, allocating the largest LAI in the middle part of the canopy. However, the fraction of LAI distributed in a higher and in a lower layer was strongly affected by elevated $T_a$; on average, the LAI distributed in the 75-90 cm (and 45-60 cm) layer of total LAI was 9.4% (and 35.0%), 18.8% (25.9%) and 18.6% (29.2%) in ambient $T_a$, $1.3^{\circ}C$ and $3.0^{\circ}C$ above ambient $T_a$, respectively. Most of the parameters related to flag leaf morphology was negated with elevated [$CO_2$]; there were about 12%, 5%, 7.5%, 15% and 21% decreases in length (L), width (W), L:W ratio, area and mass of the flag leaf, respectively, at elevated [$CO_2$]. However, the negative effect of elevated [$CO_2$] was offset to some extent by $T_a$ warming. All modifications observed were directly or indirectly associated with either stimulated leaf expansion or crop phenology under $T_a$ warming with elevated [$CO_2$]. We conclude that plant architecture and flag leaf morphology of rice can be modified both by $T_a$ warming and elevated [$CO_2$] via altering crop phenology and the extent of leaf expansion.

Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea (광릉 활엽수림에서 Community Land Model 3.5-Dynamic Global Vegetation Model의 평가)

  • Lim, Hee-Jeong;Lee, Young-Hee;Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 2010
  • The performance of Community Land Model version 3.5 - Dynamic Global Vegetation Model (CLM-DGVM) was evaluated through a comparison with the observation over temperate deciduous forest in Gwangneung, Korea. Influence of plant phenology, composition of plant functional type, and climate variability on carbon exchanges was also examined through sensitivity test. To get equilibrium carbon storage, the model was run for 400 years driven by the observed atmospheric data at the deciduous forest of the year 2006. We run the model for 2006 with the equilibrium carbon storage at Gwangneung forest and compared the model output with the observation. A comparison of leaf area index (LAI) between the model and observation indicated that the simulated phenology poorly represented the timing of budburst, leaf-fall, and evolution of LAI. Senescence of the phenology was delayed about four weeks and the simulated maximum LAI (of 5.8 $m^2$ $m^{-2}$) was greater than the observed value (of 4.5 $m^2$ $m^{-2}$). The overestimated LAI contributed to overestimation of both gross primary productivity (GPP) and ecosystem respiration $(R_e)$ through increased photosynthesis and foliar autotropic respiration $(R_a)$, respectively. Despite the discrepancy between the simulated and observed LAI, the simulated tree carbon storage amounts were comparable with the reported values at the site. Change in plant phenology from the simulated to the observed reduced more than six weeks of the plant growth period, resulting in the decreased amount of GPP and $R_e$. These values, however, were still higher (~10% of GPP and 40% of $R_e$) than the observed values. The effect of change in plant functional type composition (from dominant temperate deciduous forest to the coexistence of temperate deciduous and needle leaf forests) on the estimated amount of GPP and $R_e$ was marginal. The influence of climate variability on carbon storage amounts was not significant. The simulated inter-annual variation of GPP and $R_e$ from 1994 to 2003 depended on annual mean air temperature and total radiation but not on precipitation. Other deficiencies of CLM3.5-DGVM have been discussed.