• Title/Summary/Keyword: Leaf parameter

Search Result 66, Processing Time 0.022 seconds

Antioxidative Activity of Smilax china L. Leaf Teas Fermented by Different Strains (균주에 따른 청미래덩굴잎 발효차의 항산화 활성)

  • Lee, Sang-Il;Lee, Ye-Kyung;Kim, Soon-Dong;Kang, Yun Hwan;Suh, Joo Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.807-819
    • /
    • 2012
  • To evaluate the functional characteristic and availability for drinking of the fermented Smilax china leaf tea by using different microbial species, various fermented leaf tea was prepared by non-fermentation (C), or the fermentation of Saccharomyces cerevisiae (S), Bacillus sp. (B), Bifidobacterium bifidus (L), Monascus pilosus (M) and Aspergilus oryzae (A), and sensory and antioxidant parameter of each brewed tea was observed. The color of the A tea was red, but the other teas were yellow in color. Furthermore, the aesthetic quality of the A and M tea was 3.95 and 3.30 point, respectively, and other teas (2.55~2.28) were similar to that of the C tea. TP of fermented tea water extract was lower than that of the C, although TF was not significantly different between the fermented and non-fermented tea. Especially, TF of the A tea was significantly lower than those of the other teas. The range of EDA ($1mg/m{\ell}$) of water and ethanol extracts of tea C and the fermented teas was 19.25~22.48%; however, tea A was only 8.04~12.49%. In addition, FRAP, FICA and LPOIA of teas were not significantly different between the fermented and non-fermented teas. On the other hand, XOIA and AOIA of tea ethanol extracts were slightly higher than those of water extracts. XOIA of water extract derived from the teas was 4.83~9.20%, while ethanol extract of these was 9.00~19.00%. However, XOIA of B and L teas water extract was not detected. Furthermore, AOIA of fermented tea water extract (30.17~48.52%) were lower than those of ethanol extract (44.09~66.93%). In this study, interestingly, antioxidant parameters, such as FRAP, FICA, LPOIA and AOIA, of the A tea water extract (0.1%) was higher than that of the other tea in spite of high decreasing rate in the contents of TP and TF. Therefore, above results imply the possibility of fermented Smilax china leaf tea as a functional food.

Changes in Growths of Tomato and Grafted Watermelon Seedlings and Allometric Relationship among Growth Parameters as Affected by Night Temperature (야간온도에 따른 토마토묘와 수박 접목묘의 생육과 생육지표간 상대적 관계)

  • Kang, Yun-Im;Kwon, Joon-Kuk;Park, Kyoung-Sub;Choi, Hyo-Gil;Choi, Gyeong-Lee;Lee, Si-Young;Cho, Myeong-Whan;Kim, Dae-Young;Kang, Nam-Jun
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.9-19
    • /
    • 2011
  • This study aimed to investigate the effect of night temperature on tomato and grafted watermelon seedlings, particularly, shoot height, leaf area, stem diameter, and total dry weight and relationship among the growth parameters which are used to evaluate healthy seedling. Plants were grown at 10, 15, and $20^{\circ}C$. Leaf area index (LAI) and total dry weight of tomato seedlings weight deceased more significantly under $10^{\circ}C$ than other night temperature regimes. In grafted watermelon seedlings, shoot height increased shapely and stem diameter decreased under $20^{\circ}C$. Increasing the integral temperature, leaf area of tomato seedlings under $10^{\circ}C$ decreased and shoot height of grafted watermelon seedlings increased although temperature integrals are same. The relationships among the growth parameter were changed upon the night temperature. Stem diameters of tomato seedlings had upward tendency with increase of shoot height, but there were no significant differences among night temperature regimes. Shoot hight of grafted watermelon seedlings had no relationship with shoot height. These results indicate that shoot height and stem diameter of tomato seedlings is not appropriate for assessing seedlings quality but shoot height of grafted watermelon seedlings with stem diameter is available.

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat (밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과)

  • Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.307-317
    • /
    • 2021
  • In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VI). Diagnosis of Drought Tolerance by the P-V Curves of Twenty Broad-Leaved Species (수목(樹木)의 수분특성(水分特性)에 관한 생리(生理)·생태학적(生態學的) 해석(解析)(VI). P-V 곡선법(曲線法)에 의한 활엽수(闊葉樹) 20종(種)의 내건성(耐乾性) 진단(診斷))

  • Han, Sang Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.210-219
    • /
    • 1991
  • This study is to diagnose the drought tolerance of twenty broad-leaved tree species by the pressure-volume(P-V) curves. As for the diagnosis of drought tolerance, the valuable water relations parameters obtained from P-V curves are the osmotic potential at full turgor, ${\Psi}_0{^{sat}}$, osmotic potential at incipient plasmolysis, ${\Psi}_0{^{tlp}}$, maximum bulk modulus of elasticity, $E_{max}$, and relative water content at incipient plasmolysis, $RWC^{tlp}$. Also, the figures related to the diagnosis of drought tolerance are the free water content (FWC) versus leaf water potential(${\Psi}_L$), volume-averaged turgor pressure ($P_{vat}$) versus leaf water potential (${\Psi}_L$), and H$\ddot{o}$fler diagram. In this study, the relatively high drought tolerant species are Fraxinus rhynchophylla, Quercus acutissima, Quercus serrata, Quercus aliena, and Populus alba${\times}$glandulosa ; the relatively low drought tolerant species are Fraxinus mandshurica, Betula platyphylla var. japonica, Populus euramericana, Kalopanax pictum, Carpinus loxiflora, Carpinus cordata, Prunus sargentii, Prunus leveilleana, and Cornus controversa ; medium species are Quercus mongolica, Acer mono, Acer triflorum, Acer pseudo-sieboldianum, Ulmus davidiana, and Zelkova serrata.

  • PDF

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.

Analysis of Leaf Node Ranking Methods for Spatial Event Prediction (의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

Regionalization of CN Parameters for Nakdong River Basin using SCE-UA Algorithm (SCE-UA 최적화기법에 의한 낙동강 유역의 CN값 도출)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Jung-Jin;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • CN values are changed by various surface condition, which is cover type or treatment, hydrologic condition, or percent impervious area, even the same combination of land use and hydrologic soil group. In this study, CN parameters were regionalized for Nakdong River Basin by Long-Term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA, which is one of the global optimization technique. Six watersheds were selected for calibration (optimization) and periodic validation and two watersheds for spatical validation as ungauged watershed within Nakdong River Basin. Nash-Sutcliffe (NS) values were 0.66~0.86 for calibration, 0.68~0.91 for validation, and 0.60 and 0.85 for ungauged watersheds, respectively. Urban area for the selected watersheds covered high impervious area with 85% for residential area and 92% for commercial/industrial/transportation area. Hydrologic characteristics for crop area was similar to row crop with contoured treatment and poor hydrologic condition. For the forested area, hydrologic characteristics could be clearly distinguished from the leaf types of plant. Deciduous, coniferous, and mixed forest showed low, moderate, and high runoff rates by representing wood with fair and poor hydrologic condition, and wood-grass combination with fair hydrologic condition, respectively. CN parameters from this study could be strongly recommended to be used to simulate runoff for ungauged watershed.

The Influence of Long-term Aloe Supplement on Anti-oxidative Defenses and Cholesterol Content in Brain and Kidney of Aged Rats

  • Lim, Beong-Ou;Park, Pyo-Jam;Park, Dong-Ki;Choi, Wahn-Soo;Kim, Jong-Dai;Yu, Byung-Pal
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.352-356
    • /
    • 2007
  • The present study was investigated the anti-oxidative effects of aloe vera ingestion on brain and kidney in aged rats by monitoring several oxidative-related parameters. Male specific pathogen-free Fischer 344 rats were randomly divided into four groups of five rat each: Group A was fed test chow without aloe supplementation; Group B was fed a diet containing a 1% freeze-dried aloe filet; Group C was fed a diet containing a 1% charcoal-processed, freeze-dried aloe filet; and Group D was fed a diet containing a charcoal-processed, freeze-dried, whole leaf aloe in drinking water. Analyses of tissues were done at 4 months and 16 months of age. Results showed that a long-term intake of aloe, regardless of the preparation used, enhanced antioxidant defenses against lipid peroxidation, as indicated by reduced phosphatidylcholine hydroperoxide levels in both brain and kidney. The additional benefit of aloe intake on the anti-oxidative action was evidenced by enhanced superoxide dismutase and catalase activity in all aloe-ingested groups. Another beneficial effect of aloe shown in this study, although not an anti-oxidative parameter, was its cholesterol-lowering effect as detected in brain and kidney with significant decreases at age16 months of aloe-fed rats. Based on these findings, we conclude that a long-term dietary aloe supplementation modulated the anti-oxidative defense systems and cholesterol level.

Early Alterations of Chlorophyll Fluorescence by Light-Chilling in Cucumber (Cucumis sativus) Leaves and Their Usage as Stress Indicators (오이 잎에서 저온 광저해에 의한 형광유도과정의 초기 변이와 스트레스 지표)

  • Ha, Suk-Bong;Young-Jae Eu;Choon-Hwan Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.151-163
    • /
    • 1996
  • To investigate the early symptoms of light-chilling, alterations of chlorophyll fluorescence transients were monitored in cucumber (Cucumis sativus L. cv. Ilmichungjang) leaves. During 24 h chilling, decreases in (Fv)m/Fm, qE and qQ, and an increase in Fo were observed. The chilling effects were not recovered at room temperature, and a significant increase in Fo was observed during the recovery period. After 6 h chilling, ‘dip’(D) level of the transients became obscure, and the negative slope after ‘peak’(P) disappeared. The first derivative (dFv/dt) of the fast fluorescence rise curve was used to obtain more accurate information about the changes in the transients. The maximal rate of the fluorescence increase in the D-p rise curve (Fr) has been the most frequently used chilling stress indicator. However, a correct value of Fr could not be measured when the D level became obscure. This problem was overcome by introducing a new indicator, HFr (dFv/dt at Fv = 1/2 (Fv)m), and HFr gave very similar values to Fr. To monitor the changes in curvature around D level, another new parameter, ${\Delta}S$(D-Fr), was also introduced. These three parameters decreased very sensitively during light-chilling. In addition, increases in these parameters were observed during the first 2 h chilling, but this increase in Fr was also observed in pea leaf discs dark-chilled for 15 min, suggesting that this very early change is a common response to chilling in both pea and cucumber leaves. Quenching coefficients were also very sensitive to chilling, especially qE. Discussion on the usage of these parameters as chilling stress indicators is given in the text.

  • PDF

Assessment of Forest Vegetation Effect on Water Balance in a Watershed (산림식생에 따른 유역 물수지 영향 평가)

  • Kim, Chu- Gyum;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.737-744
    • /
    • 2004
  • In this study, to evaluate the effect of forest vegetation on the long-term water balance in a watershed, semi-distributed and physically based parameter model, SWAT was applied to the Bocheong watershed, and the variation of hydrological components such as evapotranspiration, surface flow, lateral flow, base flow, and total runoff was investigated with coniferous and deciduous forests, respectively. First, SWAT model was modified to simulate the actual plant growth pattern of coniferous trees which have the uniform value of leaf area index all the seasons of the year. The modified model was applied to the watershed that is assumed to have only one land cover in the whole watershed, and the variation of the water balance components was investigated for each land cover. It was found that coniferous forest affected the increase in evapotranspiration and decrease in runoff more than deciduous forest. However, the age and the density of stand, the location, and soil characteristics and meteorological conditions including the tree species should be also considered to examine the effect more quantitatively and to reduce the uncertainties in simulated output from the hydrological model.