• Title/Summary/Keyword: Leading edge

Search Result 657, Processing Time 0.036 seconds

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

A Comparison Study of Wing Leading Edge Skin Models in Small Composite Solar-Powered UAVs (소형 복합재 태양광 무인기 윙 리딩에지스킨 모델 비교 연구)

  • Yang, Yong-Man;Kim, Yong-Ha;Kim, Jong-Hwan;Kim, Young-In;Lee, Soo-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.445-452
    • /
    • 2017
  • The wing leading edge skin in this research is an essential structural factor for improving wings' aeromechanical functions, protecting the interior elements of the wings from external damage including birds, and navigating planes safely. The study compared and reviewed models manufactured for optimal light-weight wings of composite UAVs. It compared and investigated displacement forms of torsion loads through finite element analysis using MSC. Patran/Nastran. By confirming the improvement of light-weighting performance according to lamination type, thickness change and shape through torsion strength tests of each model, the research suggested the optimal light-weight wing leading edge skin for small composite UAVs.

The I/LWEQ Domain in RapGAP3 Required for Posterior Localization in Migrating Cells

  • Lee, Mi-Rae;Kim, Hyeseon;Jeon, Taeck J.
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.307-313
    • /
    • 2014
  • Cell migration requires a defined cell polarity which is formed by diverse cytoskeletal components differentially localized to the poles of cells to extracellular signals. Rap-GAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation and localizes to the leading edge of migrating cells. Here, we examined localization of truncated RapGAP3 proteins and found that the I/LWEQ domain in the central region of RapGAP3 was sufficient for posterior localization in migrating cells, as opposed to leading-edge localization of full-length Rap-GAP3. All truncated proteins accumulated at the leading edge of migrating cells exhibited clear translocation to the cell cortex in response to stimulation, whereas proteins localized to the posterior in migrating cells displayed no translocation to the cortex. The I/LWEQ domain appears to passively accumulate at the posterior region in migrating cells due to exclusion from the extended front region in response to chemoattractant stimulation rather than actively being localized to the back of cells. Our results suggest that posterior localization of the I/LWEQ domain of RapGAP3 is likely related to F-actin, which has probably different properties compared to newly formed F-actin at the leading edge of migrating cells, at the lateral and posterior regions of the cell.

Influence of Thru Holes Near Leading Edge of a Model Propeller on Cavitation Behavior (균일류에서 프로펠러 앞날 근처 관통구가 모형 프로펠러 캐비테이션에 미치는 영향)

  • Ahn, Jong-Woo;Park, Il-Ryong;Park, Young-Ha;Kim, Je-In;Seol, Han-Shin;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.281-289
    • /
    • 2019
  • In order to investigate the influence of thru holes near leading edge of model propeller on cavitation behavior, a model propeller with thru holes was manufactured and tested at Large Cavitation Tunnel (LCT). The pressure distribution around the thru hole on propeller blade was numerically calculated to help understand the local flow characteristics related to cavitation behavior. The model propeller is a five bladed propeller which has 2 blades with thru holes and 3 blades with smooth surface. The cavitation observation tests were conducted at angles of $0^{\circ}$ & $6^{\circ}$ using an inclined-shaft dynamometer in LCT. There are big difference on the suction side cavitation behavior each other due to the existence of thru hole. While the blades with thou holes start generation of the sheet cavitation from the leading edge on the suction side, the blades with smooth surface generate the cloud cavitation from the mid-chord. Cavitation on the blades with thru holes shows more similar behavior to those of the full-scale propeller of which the pipe line for air injection is closed. The numerical analysis result shows that the sharp pressure drop occurs around thru holes on the blade. Consequently, the thru hole around leading edge stimulates the cavitation occurrence and stabilizes the cavitation behavior. Based on these results, the effect of thru holes on propeller cavitation behavior behind a model ship should be studied in the future.

NUMERICAL STUDY OF NON-UNIFORM TIP CLEARANCE EFFECTS ON THE PERFORMANCE AND FLOW FIELD IN A CENTRIFUGAL COMPRESSOR (비균일 익단간극이 원심압축기의 성능과 유동에 미치는 영향에 대한 수치해석적 연구)

  • Jung, Y.H.;Park, J.Y.;Choi, M.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • This paper presents a numerical investigation of the influences of various non-uniform tip clearances on the performance and flow field in a centrifugal compressor. Numerical simulations were conducted for three centrifugal compressor impellers in which the tip clearance height varied linearly from the leading edge to the trailing edge. The numerical result was compared with the experimental data for validation. Although the performance improved for low tip clearances, a smaller tip clearance at the trailing edge reduced the overall tip leakage flow more effectively than a smaller tip clearance at the leading edge. Therefore, a smaller tip clearance at the trailing edge lowered the mixing loss caused by interactions between the tip leakage flow and the main passage flow.

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

Controlling the Horseshoe Vortex by the Leading-Edge Fence at a Generic Wing-Body Junction (일반적인 날개 형상에서의 앞전 판에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.336-343
    • /
    • 2009
  • Secondary flow losses can be as high as 30~50% of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and investigates the characteristics of the generated horseshoe vortex as the shape factors, such as the installed height, and length of the fence. The study was investigated using $FLUENT^{TM}$. Total pressure loss coefficient was improved about 4.0 % at the best case than the baseline.

Shower-Head Film Cooling on the Leading Edge of a Turbine Blade: Measurements of Local Blowing Ratio and Flow Visualizations (터빈 블레이드 선단에서의 샤워헤드 막냉강 - 국소분사율 측정 및 유동의 가시화 -)

  • Jeong, Chul Hee;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.419-430
    • /
    • 1999
  • Measurements of local blowing ratio and ammonia-diazo flow visualizations have been conducted for a shower-head film cooling on a first-stage turbine stator. In this study, six rows of normal holes are drilled symmetrically on the semicircular leading edge of a simulated blunt body. The measurements show that for an average blowing ratio based on freestream velocity, M, of 0.5, local average mass flow rate through the first two rows of the holes is less than those through the second and third two rows of the holes, and the fraction of mass flow rate through the first two rows to total mass flow rate has a tendency to increase with the increment of M. The flow visualizations reveal that the injection through the first two row results in inferior film coverage even In the case of M = 0.5, meanwhile the row of holes situated at farther downstream location provides higher film-cooling performances for all tested M. This is because film-cooling effectiveness depends on local mainflow velocity at the hole location as well as the mass flow rate through each row.

Noise and flow analysis of lift-type disk wind power System (양력형 디스크 풍력 발전기의 유동 및 소음 해석)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we investigate the flow characteristics of lift-type disk which behaves the up-down motion using the large eddy simulation (LES) and immersed boundary method (IBM). Also, we perform the noise analysis using pressure field at 1.35 m distance and reveal the cause of noise to observe the vortical structure analysis of flow result. It is observed that vortical structure and wind shear were generated at leading edge and tower with high velocity deficit and flow separation. High magnitude of flow noise was observed in low frequency range which is from 30 Hz to 60 Hz. It was observed that vortical structure at leading edge was generated in frequency range from 33.3 Hz to 41.6 Hz. Temporal characteristic in vortical structure at leading edge was similar to noise characteristics, having the similar frequency ranges.

Large-Scale Structure of Leading-Edge Separation Bbubble with Local Forcing (국소교란이 가해지는 박리기포의 대형구조)

  • 김유익;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1134-1147
    • /
    • 1995
  • POD (proper orthogonal decomposition) is applied to turbulent leading-edge separation bubble to extract coherent structures. A two-dimensional leading-edge separation bubble is simulated by discrete-vortex method, where a time-dependent source forcing is incorporated. Based on the wealth of numerical data, POD is applied in a range of the forcing amplitude ( $A_{o}$ = 0, 0.5, 1.0 and 1.5) and forcing frequency (0 .leq. $f_{F}$H/ $U_{\infty}$.leq. 0.3). It is demonstrated that the structures of POD have noticeable changes with local forcings. In an effort to investigate the mechanism of decreasing reattachment length, dynamic behaviors of the expansion coefficients and contributions of the eigenfunctions of POD are scrutinized. As the forcing amplitude increases, the large-scale vortex structures are formed near the forcing amplitude increases, the large-scale vortex structures are formed near the separation point and the flow structures become more organized and more regular, accompanying with the reduction of reattachment length. By further inverstigation of POD global entropy, it is seen that the reattachment length is closely linked to the degree of organization of the flow structures.es.s.