• Title/Summary/Keyword: Leading display

Search Result 155, Processing Time 0.024 seconds

Effect of the Substrate Temperature on Monitoring of Atomic Layer Etching Rate via an In-situ Ellipsometer (타원계측장치를 이용한 실시간 원자층 식각률 모니터링에서 기판 온도의 영향)

  • Lee, Young Seok;Lee, Jang Jae;Lee, Sang Ho;Seong, In Ho;Cho, Chul Hee;Kim, Si Jun;You, Shin Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.96-99
    • /
    • 2019
  • Atomic layer etching (ALE) is one of the most promising techniques in the semiconductor industry. Since ALE has to be precisely controlled on the angstrom scale to achieve ideal results, an in-situ analysis of the processes is highly required. In this regard, we found during ALE experiments with in-situ monitoring with an ellipsometer that changes in the substrate temperature affected the refractive index of a material, leading to changes in measured film thickness. In addition, more ideal ALE results could be achieved by keeping the substrate temperature constant.

The Patent Analysis of Thermally Activated Delayed Fluorescence Materials (열 활성 지연 형광(TADF) 재료의 특허 분석)

  • Jo, Dae Seong;Sung, Min Jae;Kim, Min Ho;Choi, Seung Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • The TADF (Thermally Activated Delayed Fluorescence)-based OLED patents were analyzed and 4410 of patents were selected at the first step. And 975 patents were screened at second step. Finally, 39 key patents were selected. Patent qualitative analysis was performed in these patents to find which of the four property (lifetime, efficiency, color purity, driving voltage) of TADF was improved. Also, the variation of the hosts and dopants in patented TADF material were surveyed and their combination was analyzed. According to the analysis of the variation and the combination, some of TADF compounds were used as an assistant dopant to transfer energy. In addition, it tended to transfer energy by forming exciplex that shows TADF characteristics. These were similar to the mechanism of the introduced hyper fluorescence and could solve the inherent TADF problems. Finally, patent citation network was illustrated to visualize the patent citations and citations relationship of the major applicants in the current TADF-based OLED technology. The leading patent applicant organization was revealed as Idemitsu Kosan, Semiconductor Energy Laboratory, UDC, Princeton University, Merck and Nippon Steel & Sumikin Chemical, which had lots of reference patents 559, 524, 477, 310, 258, and 167, respectively.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound (나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발)

  • Nohyu Kim;Sang Hoon Lee;Sang Yoon;Yong-Rae Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF

Triode-Type Field Emission Displays with Carbon Nanotube Emitters

  • You, J.H.;Lee, C.G.;Jung, J.E.;Jin, Y.W.;Jo, S.H.;Nam, J.W.;Kim, J.W.;Lee, J.S.;Jang, J.E.;Park, N.S.;Cha, J.C.;Chi, E.J.;Lee, S.J.;Cha, S.N.;Park, Y.J.;Ko, T.Y.;Choi, J.H.;Lee, S.J.;Hwang, S.Y.;Chung, D.S.;Park, S.H.;Kim, J.M.
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.48-53
    • /
    • 2001
  • Carbon nanotube emitters, prepared by screen printing, have demonstrated a great potential towards low-cost, largearea field emission displays. Carbon nanotube paste, essential to the screen printing technology, was formulated to exhibit low threshold electric fields as well as an emission uniformity over a large area. Two different types of triode structures, normal gate and undergate, have been investigated, leading us to the optimal structure designing. These carbon nanotube FEDs demonstrated color separation and high brightness over 300 $cd/m^2$ at a video-speed operation of moving images. Our recent developments are discussed in details.

  • PDF

Thermal Optimization of a Straight Fin Heat Sink with Bypass Flow (바이패스가 있는 히트 싱크의 열성능 최적화)

  • Kim, Jin-Wook;Kim, Sang-Hoon;Kim, Joong-Nyon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • This experimental study investigated the effect of tip clearance and bypass flow on the cooling performance of a straight fin heat sink. Both the horizontal and vertical directions of the bypass flow were studied by using a mass flow controller and test sections. The thermal resistance of a heat sink was obtained to elucidate the response of the cooling performance to tip clearance and bypass flow. The thermal resistance of a straight fin heat sink gradually increases with increasing tip clearance. A flow guide unit was employed to reduce the bypass flow. An optimal distance from the leading edge of the heat sink to the flow guide unit was found for the fixed volume flow rate. The contribution of the flow guide unit to the thermal performance of a heat sink increases with increasing volume flow rate.

Overcome the Screen Limitations of Smartwatch (스마트워치 화면 제약 해결 방안에 대한 연구)

  • Wang, Lin;Son, Yu Jin;Lim, Da Eun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.37-46
    • /
    • 2015
  • Nowadays, given the popularity of wearable devices, The smartwatch is considered as the leading product category and taking the main share of wearable device market. So far smartwatch is only used as an accessorial device of smart phones due to its screen size. The objective of this study is to review literatures and find solutions to overcome the screen limitations. In the literature review, several methods are introduced including using other devices as output devices, other object as screens by projecting technologies, and enlarging screen size by flexible display. Based on that, possible solutions including seamless display and user-centered interaction methods were investigated. Future research directions were also introduced at the end of this study.

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

Prediction of Customer Failure Rate Using Data Mining in the LCD Industry (LCD 디스플레이 산업에서 데이터마이닝 알고리즘을 이용한 고객 불량률 예측)

  • You, Hwa Youn;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.5
    • /
    • pp.327-336
    • /
    • 2016
  • Prediction of customer failure rates plays an important role for establishing appropriate management policies and improving the profitability for industries. For these reasons, many LCD (Liquid crystal display) manufacturing industries have attempted to construct prediction models for customer failure rates. However, most traditional models are based on the parametric approaches requiring the assumption that the data follow a certain probability distribution. To address the limitation posed by the distributional assumption underpinning traditional models, we propose using parameter-free data mining models for predicting customer failure rates. In addition, we use various information associated with product attributes and field return for more comprehensive analysis. The effectiveness and applicability of the proposed method were demonstrated with a real dataset from one of the leading LCD companies in South Korea.