• 제목/요약/키워드: Leading Edge Separation

검색결과 87건 처리시간 0.031초

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • 제34권5호
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

충동형 초음속 터빈 익렬의 설계 변수에 따른 익렬내 유동 특성에 관한 수치적 연구 (Numerical Analysis of Flow Characteristics within Blades for Design Parameters of Impulse Supersonic Turbine Blade)

  • 신봉근;정수인;김귀순;이은석
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.62-72
    • /
    • 2004
  • 본 연구에서는 우선 전산 결과의 신뢰성을 검증하기 위하여 동일 조건의 실험결과와 비교하였다. 그 결과를 살펴보면 전산결과와 실험결과가 대체적으로 잘 일치하였다. 다음으로 압력면 및 흡입면의 원호반경, 피치 코드비등의 설계인자에 따른 유동해석을 실시하였다. 익렬내의 유동 및 성능 특성은 익렬 앞전 및 노즐 끝단에서 발생하는 충격파와 익렬 내부에서 발생하는 박리에 의해 주로 좌우되었다. 그리고 노즐 끝단에서 발생하는 충격파와 박리는 익렬 내부 유로 면적에 의해서 좌우되었으며, 익렬 앞전에서 발생하는 충격파는 노즐이 차지하고 있는 익렬 개수에 의해 영향을 받았다.

Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas

  • Gunter, W. Scott;Schroeder, John L.;Weiss, Christopher C.;Bruning, Eric C.
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.185-204
    • /
    • 2017
  • High-resolution wind measurements at 2.25 m in height were used to investigate the mean and turbulence properties of an extreme thunderstorm wind event in West Texas. These data were combined with single Doppler scans from the Texas Tech University Ka-band mobile Doppler radars systems (TTUKa) to provide meteorological context over the surface measurement stations for portions of the outflow. Several features characteristic of a severe wind event were noted in the radar data, including a bowing portion of the thunderstorm complex and a small circulation on the leading edge. These features were reflected in the surface wind time histories and provided natural separation between various regions of the outflow. These features also contributed to the peak 1-s gust at all measurement stations. The turbulence characteristics of each outflow region were also investigated and compared. Reduced values of running turbulence intensity and elevated values of longitudinal integral scales were noted during the period of peak wind speed. Larger scales of turbulence within the outflow were also suggested via spectral analysis.

하이브리드 로켓에서의 고체연료의 국부 후퇴율에 관한 연구 (A Study on the Local Regression Rate of Solid Fuel in Hybrid Rocket)

  • 이정표;김기훈;조정태;김수종;문희장;성홍계;김진곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.89-92
    • /
    • 2008
  • 일반적으로 하이브리드 추진에서 산화제 질량유속만의 함수로 표현되는 후퇴율 식은 고체연료 길이에 따른 후퇴율 변화를 나타내지 못한다. 따라서 본 연구에서는 분할 연료 그레인을 적용해 쉽게 할 수 있는 연소 실험을 수행했고, 고체연료 길이에 따른 후퇴율의 변화를 고찰하였다. 연료 그레인 상단부에서 하단부로 갈수록 후퇴율은 감소하다가, 다시 증가하는 경향을 나타남을 확인 하였고, 산화제 질량유속과 그레인 길이의 함수로 표현할 수 있는 후퇴율 식을 도출하였다.

  • PDF

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.

CFD에 의한 NREL Phase IV 풍력터빈 성능해석 (Performance Analysis of the NREL Phase IV Wind Turbine by CFD)

  • 김범석;김만응;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF

임펠러 형상에 따른 양흡입 원심송풍기 성능특성 (Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller)

  • 이종성;장춘만
    • 한국유체기계학회 논문집
    • /
    • 제17권1호
    • /
    • pp.28-34
    • /
    • 2014
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an impeller. Two design variables, a number of blade and a length of chord, are introduced, and analyzed by a response surface method. Three-dimensional compressible Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. Throughout the numerical simulation of the blower, blower efficiency can be increased by reducing separation flow generating from the blade leading edge of a blade pressure surface. It is noted that recirculation flow observed inside the blade passage induces low velocity region, thus increases pressure loss. Efficiency and pressure of the optimum blower are successfully increased up to 3% and 3.9% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

고선회 터빈 동익 팁 표면에서의 열전달 특성 (Heat Transfer Characteristics on the Tip Surface of a High-Turning Turbine Rotor Blade)

  • 이상우;문현석
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.207-215
    • /
    • 2008
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. At the Reynolds number of $2.09{\times}10^5$, heat/mass transfer coefficients are measured for the tip gap height-to-chord ratio, h/c, of 2.0% at turbulence levels of Tu = 0.3 and 14.7%. A tip-surface flow visualization is also performed for h/c = 2.0% at Tu = 0.3%. The results show that there exists a strong flow separation/re-attachment process, which results in severe local thermal load along the pressure-side corner, and a pair of vortices named "tip gap vortices" in this study is identified along the pressure and suction-side tip corners near the leading edge. The loci and subsequent development of the pressure- and suction-side tip gap vortices are discussed in detail. The combustor-level high inlet turbulence, which increases the tip-surface heat/mass transfer, provides more uniform thermal-load distribution.