• Title/Summary/Keyword: Leader-follower formation control

Search Result 25, Processing Time 0.023 seconds

Controller Design using Sliding Mode Techniques for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho;Jo, Jeong-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.41-41
    • /
    • 2003
  • Satellite formation flying is currently an active area of research in the aerospace engineering. There are many categories for this research such as the determination of initial conditions, formation keeping, configuration and reconfiguration. In this study, a tracking controller using sliding mode techniques is designed to control a satellite for the satellite formation flying. In general, Hill's equations are used to describe the relative motion of the follower satellite with respect to the leader satellite. But, the modified Hill's equations considering J2 perturbation were used for the design of sliding mode controller. Sliding mode control law causes the chattering phenomenon because it is a discontinuous control. Dead-zone was used to avoid the chattering. The Extended Kalman filter was applied to estimate the state vector based on the measurements of relative distance and velocity between two satellites.

  • PDF

Multi-robot Formation based on Object Tracking Method using Fisheye Images (어안 영상을 이용한 물체 추적 기반의 한 멀티로봇의 대형 제어)

  • Choi, Yun Won;Kim, Jong Uk;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 2013
  • This paper proposes a novel formation algorithm of identical robots based on object tracking method using omni-directional images obtained through fisheye lenses which are mounted on the robots. Conventional formation methods of multi-robots often use stereo vision system or vision system with reflector instead of general purpose camera which has small angle of view to enlarge view angle of camera. In addition, to make up the lack of image information on the environment, robots share the information on their positions through communication. The proposed system estimates the region of robots using SURF in fisheye images that have $360^{\circ}$ of image information without merging images. The whole system controls formation of robots based on moving directions and velocities of robots which can be obtained by applying Lucas-Kanade Optical Flow Estimation for the estimated region of robots. We confirmed the reliability of the proposed formation control strategy for multi-robots through both simulation and experiment.

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Depth image Based Formation Control for Swarm Robots Using Marker Recognition (마커 인식을 이용한 깊이 영상 기반 군집로봇 대형제어)

  • Choi, Seung Yub;Tak, Myung Hwan;Joo, Young Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1325-1326
    • /
    • 2015
  • 본 논문에서는 마커 인식을 이용한 깊이 영상 기반 군집로봇 대형제어 방법을 제안한다. 제안한 방법은 먼저, follower 로봇들의 입력 영상에서 마커 인식 알고리즘을 이용하여 마커를 인식 한 뒤 인식된 마커를 분석하여 등록된 ID를 찾는다. 검출된 마커의 ID가 leader로봇의 ID일 경우 해당 마커의 위치와 기울기 값을 깊이 영상 센서로부터들어오는 깊이 정보를 통해 계산 한 뒤 마커의 위치와 기울기를 이용하여 대형제어를 한다. 마지막으로 제안한 알고리즘을 실제 로봇을 이용한 대형 제어실험을 통해 응용 가능성을 증명한다.

  • PDF

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.