• Title/Summary/Keyword: Leader robot

Search Result 40, Processing Time 0.024 seconds

Leader Robot Controller Considering Follower with Input Constraint (입력 제한을 가진 추종 로봇을 고려한 선도 로봇 제어기)

  • Lee, Seung-Joo;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1032-1040
    • /
    • 2012
  • This paper proposes controller of leader robot considering following robot with input constraints based on leader-following approach. In the previous formation control researches, it was assumed that leader and follower is same object. If leader robot drives as maximum speed that the initial position errors still remain even if following robot have same velocity as a leader. In the situation that velocity of following robot is lower than its leader robot, following robot cannot follow leader robot. Furthermore, the following robot will not be able to made formation with leader robot and keep proximity communication or sensing range. Therefore, multiple mobile robot system using leader-following method should be guaranteed range to get information each other. In this paper, Leader robot is driving to goal position using linear controller and following robot is following trajectory to be made from leader robot. We assume that following robot has input constraints to realize different performance between leader robot and following robot. We design controller of leader robot for desired goal position including the errors between formation and following robot. Thus, we propose leader robot controller considering input constraints of following robot. Finally, we were able to confirm the validity of the proposed method based on simulation results.

Obstacle Avoidance of Leader-Follower Formation (리더-추종자 대형제어의 장애물 회피)

  • Oh, Young-Suk;Park, Jong-Hun;Kim, Jin-Hwan;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1761-1766
    • /
    • 2011
  • This paper presents obstacle avoidance of Leader-Follower formation. The follower robot maintain the formation with leader robot and avoid the detected obstacle. When obstacle is detected, follower robot avoid it considering leader robot and follower robot position and follower robot and obstacle position. In addition, follower robot avoid obstacle irrespective of obstacle size. Controller of follower robot is designed to satisfy Lyapunov stability by backstepping method. Simulation results shows that the designed controller has a stable performance.

LOS (Line of Sight) Algorithm and Unknown Input Observer Based Leader-Follower Formation Control (LOS 알고리듬과 미지 입력 관측기에 기초한 선도-추종 대형 제어)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Seong-Jea;Hong, Sup;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • This paper proposes about decentralized control approach based Leader-Follower formation control using LOS (Line of Sight) algorithm and unknown input observer. The position of robots which is a basic information in multi-robot or single robot motion control is determined by localization algorithm fusing UPS (Ultrasonic Position System) and kinematics model. For formation control, a decentralized control approach individually installing a local controller in leader and follower robot is adopted. Leader robot is controlled to track a specified trajectory by LOS algorithm, and the other robots follow the leader by local controller based on tracking platoon level function, self-sensing data and estimated information from unknown input observer. The performance of proposed method is proven through the formation experiment of two vehicle models.

Leader-Follower Based Formation Control of Multiple Mobile Robots Using the Measurements of the Follower Robot (추종 로봇의 측정값들을 이용한 다중 이동 로봇의 선도-추종 접근법 기반 군집 제어)

  • Park, Bong Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.385-389
    • /
    • 2013
  • This paper proposes the leader-follower based formation control method for multiple mobile robots. The controller is designed using the measurements of the follower robot such as the relative distance and angle between the leader and the follower. This means that the follower robot does not require the information of the leader robot while keeping the desired formation. Therefore, the proposed control method can reduce the communication loss and the cost for hardware. From Lyapunov stability theory, it is shown that all error signals in the closed-loop system are uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the proposed control system.

Leader-Following Based Adaptive Formation Control for Multiple Mobile Robots (다개체 이동 로봇을 위한 선도-추종 접근법 기반 적응 군집 제어)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.428-432
    • /
    • 2010
  • In this paper, an adaptive formation control based on the leader-following approach is proposed for multiple mobile robots with time varying parameters. The proposed controller does not require the velocity information of the leader robot, which is commonly assumed that it is either measured or telecommunicated. In order to estimate time varying velocities of the leader robot, the smooth projection algorithm is employed. From the Lyapunov stability theory, it is proved that the proposed control scheme can guarantee the uniform ultimate boundedness of error signals of the closed-loop system. Finally, the computer simulations are performed to demonstrate the performance of the proposed control system.

Leader-Following Sampled-Data Control of Wheeled Mobile Robots using Clock Dependent Lyapunov Function (시간 종속적인 리아프노프 함수를 이용한 모바일 로봇의 선도-추종 샘플 데이터 제어)

  • Ye, Donghee;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.119-127
    • /
    • 2021
  • The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.

Positioning of a Leader Robot in a Leader-Follower Robot Using Low-Cost Infrared(IR) Distance Sensors (저가형 적외선 거리 센서를 이용한 선도-추종 로봇시스템에서 선도로봇의 위치인식)

  • Sanjaakhand, Battuya;Jang, Moon-Suk;Cha, Dong-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.275-283
    • /
    • 2020
  • A leader-follower robot system using low cost small mobile robots has been developed. Sine the developed mobile robot is made of widely used low cost parts, it can be built easily and fastly. Characteristics of the developed sensor array composed of seven low-cost infrared(IR) distance sensors has been investigated, and a positioning algorithm of the reader robot is proposed. Through a series of experiments, it has been verified that the proposed algorithm can detect the position of the reader robot well.

Cooperating Control of Multiple Nonholonomic Mobile Robots Carrying a Ladder with Obstacles

  • Yang, Dong-Hoon;Choi, Yong-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.818-829
    • /
    • 2003
  • A cooperating control algorithm for two nonholonomic mobile robots is proposed. The task is composed of collision avoidance against obstacles and carrying a ladder. The front robot and the rear robot are called the leader and the follower, respectively. Each robot has a nonholonomic constraint so it cannot move in perpendicular directions. The environment is initially supposed to be unknown except target position. The torque that drives leader is determined by distance between the leader and the target position or the distance between it and the obstacles. The torque by target is attractive and the torque by obstacles is repulsive. The two mobile robots are supposed to be connected by link that can be expanded and contracted. The follower computes its torque using position and orientation information from the leader by communication. Simulation results show that the robots can drive to target position without colliding into the obstacles and maintain the distance in the allowable range.

  • PDF

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

Sampled-Data MPC for Leader-Following of Multi-Mobile Robot System (다중모바일로봇의 리더추종을 위한 샘플데이타 모델예측제어)

  • Han, Seungyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.308-313
    • /
    • 2018
  • In this paper, we propose a sampled-data model predictive tracking control deign for leader-following control of multi-mobile robot system. The error dynamics of leader-following robots is modeled as a Linear Parameter Varying (LPV) model. Also, the Lyapunov function is presented to guarantee stability of the networked control system. Based on the stabilization condition using a quadratic Lyapunov function approach, model predictive sampled-data controller is designed. Finally, the leader-following control of multi mobile robots is simulated to show effectiveness of the proposed method.