
ISSN 1975-8359(Print) / ISSN 2287-4364(Online)

The Transactions of the Korean Institute of Electrical Engineers Vol. 67, No. 2, pp. 308~313, 2018

http://doi.org/10.5370/KIEE.2018.67.2.308

308 Copyright ⓒ The Korean Institute of Electrical Engineers

 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/

licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Abstract - In this paper, we propose a sampled-data model predictive tracking control deign for leader-following control of 

multi-mobile robot system. The error dynamics of leader-following robots is modeled as a Linear Parameter Varying (LPV) 

model. Also, the Lyapunov function is presented to guarantee stability of the networked control system. Based on the 

stabilization condition using a quadratic Lyapunov function approach, model predictive sampled-data controller is designed. 

Finally, the leader-following control of multi mobile robots is simulated to show effectiveness of the proposed method.
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1. Introduction

Recently, multi-mobile robot systems are widely used for 

military, surveillance, and transportation [1], [2]. When 

multiple robots move toward a target while maintaining a 

certain distance or angle, this is called formation [3]. In the 

formation control techniques, the leader-following method has 

been adopted by many researchers [4], [5], [6]. In this 

method, the leader tracks a predefined path and the follower 

maintains a desired geometric configuration with the leader. 

When multiple robots tasks, the inception of distributed 

robotics is important issues so that communication system has 

been extensively studied.

The communication network has a number of benefits 

simple installation and maintenance, and high reliability, 

increased flexibility and safety. Therefore, many of researchers 

are focused on this topic [7], [8]. 

In networked control system, the input control is delayed 

according to network-induced delays. The network-induced 

delays usually consist of two kinds of delays: the 

communication delays between the controller and the 

following mobile robots and the communication delays 

between the controller, the actuator and sampler. The delay 

may cause instability and performance degradation so that the 

design of control scheme should be considered with aspects 

to performances of whole systems [9]. 

 In this paper, we propose a sampled-data model 

predictive control for leader-following multi-mobile robots in 

network system. To derive the condition, the LPV model [10] 

is considered in continuous time which reduces the 

difference between the dynamics of the nominal closed-loop 

system and the actual evolution of the state. It is explicitly 

assumed that the LPV model is updated only at the sampling 

instants and that the control signal is kept constant between 

two consecutive sampled by means of a zero order holder, 

while the plant and the parameters evolve continuously in 

time. In the case of periodic and aperiodic sampling time, the 

robustness should be guaranteed so that a quadratic 

Lyapunov function is considered with new looped- 

functionals. To deal with the single integral term in the 

derivative of the Lyapunov function, a generalized free- 

weighting-matrix (GFWM) [12] gives a less conservatism. 

Finally, we demonstrate the effectiveness of the proposed 

approach via numerical simulation.

The main contributions of this paper are summarized as 

follows:

(1) In the modelling aspects, we attempt to consider the 

modelling of multi-mobile robots in continuous time which 

is more accurate than the discrete time. Moreover, The MPC 

technique is not only adequate for the Leader-Follower 

model represented by error dynamics, but also consider the 

input saturation constraint.

(2) In the sampled-data LPV systems, based on 

constructing new looped-functionals and using a GFWM 
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Fig. 1 Trajectory tracking error of a mobile robot in a 

global coordinate frame

그림 1 기준 좌표계에서 이동로봇의 궤적 추적 에러

integral inequality, the proposed sampled data MPC design 

method for LPV systems can get a larger sampling interval 

upper bound than the existing one [13].

Notations: Throughout this paper, ℝ denotes the n 

dimensional Euclidean space, and ℝ× is the set of all 

×  real matrices, For symmetric matrices A and B, the 

notation  (respectively, ≥ ) means that the matrix 

   is positive definite (respectively, non- negative). 

diag{...} denotes the block diagonal matrix. * denotes the 

symmetric part.  denotes identity matrix with appropriate 

dimensions.   denotes   .

2. Problem formulation

Consider a multi robot system composed of a leader 

mobile robot and    followers. The mobile robots in 

two dimensions are shown in Fig. 1. The dynamics of each 

follower can be represented as

cos
sin


                (1)

which sec


  is linear velocity, and sec


  is angular 

velocity. The leader labeled as    has the same dynamics 

of the followers. To set up the problem, error coordinates 

between global and local coordination is considered by using 

the dynamics (1),


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
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cos sin 
sin cos 

  











   

  

  
 (2)

By differentiating (2) and substituting (1) into the result, 

the error dynamics is obtained as

   cos 

 sin
   

 (3)

Further on linearizing (3) around operating point 

             results in the 

following linear model

           (4)

where    
  

  
 , and 

     . The system matrices  and   are

 









  

   

  

,  










 
 
 

.   (5)

To consider the system’s less uncertainty, the range of 

  has ∈   , then the all solutions 

of (4) can be solved between  and 

 











   

     

  

,                

 










  
 

 
   

  

which  is the minimum of the  , and  is the 

maximum of the  .

  The network-induced input delay is considered, so the 

control input is defined

            (6)

where   is the control gain matrix for ∈   

Without loss of generality, it is assumed that the sampled 

time interval is bounded by 

  ≤                   (7)

where     and   is the maximum 

sampled delay. Using sampled signals, the LPV systems of 

mobile robot (4) is reformulated as delayed LPV model,
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          (8)

To maintain the constant distance between the leader and 

followers,

         

       

   (9)

where     is the safety distance between the leader 

and th robot in each coordinate.

Lemma 1. [11] For any constant matrices of appropriate 

dimensions     and a scalar ∈    the 

following two conditions are equivalent:

1)                     (10)

2)                                    (11)

                                        (12)

Lemma 2. [12] Consider X is a differentiable in  ∈ℝ 

For matrices    and any matrices   and  , the 

following inequality holds:




   ≤ 
  






      


  (13)

where  is any vector and     

      

 






Remark 1. From the proof of Lemma 5 [12], the generalized 

free-matrix inequality can be modified as 

  





    

   

and







  



 

respectively.

3. Main Results

The main purpose of this paper is to design a sampled- 

data MPC. the essence of a MPC scheme is to optimize 

predictions of process behavior over a sequence of future 

control inputs. Therefore, the objective function to be 

minimized can be stated as a quadratic function of the 

states and control inputs:

 


∞


 

  (14)

where  are weighting matrices. For the given 

performance index, if the following condition is satisfied

∥∥
 ∥ ∥

       (15)

then the upper bound of the performance index can be 

derived instead of directly minimizing performance index.

  Before deriving conditions, following notations are 

defined.

    

            …      

     

     

       

     

   
  

  

 



 
   




 

Theorem 1. For a given with maximum sampling interval 

, the continuous system (1) is asymptotically 

stabilizable if there exist matrices    ,   ,

 



 


 

 

  , , ,  ,and the control input at 

time instant  guarantees the performance index (13) 

with  .

min                       (16)




 


  

  

≥            (17)


  for               (18)


  for               (19)

  



 


  

 

≥        (20)
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where

 



 




 

 




 ≤ 

max


 ≤ 

max
















   ·
  ·



   

   ·
 

    ·


               







 






 



                      

  




with

         












 









         

        


                

         













         




























In addition, the state feedback gains are given as 

  .

Proof. Choosing the following Lyapunov function for 

∈      yields

 
       (21)

where

 
 



 






   


   



















 


   











   
   

 


 













 

 







  




 

Differentiate the Lyapunov function

  


                       (22)

  



 



















             (23)

 




 


 



























  









 (24)

From Lemma 2, the following holds


   









≤ 





 
 




                                                   (25)

where  ,  are auxiliary variables. Taking into account 

system dynamics (8),


 


 

 

   (26)

Summing up from (22) to (26) leads to

 
 

 

≤ 


       (27)

where

     
 

        (28)

       












 





 








 

       













 



 



       





























Pre-and post-multiplying with a matrix 
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




×, the followings are satisfied with 

Lemma 1.
















  

(29)

                       (30)

where    and   . 

Using Schur complement, the equations in (18) and (19) are 

equivalent to those of (11) and (12). For every sampling 

instance,  and  vanish. Then, the upper bound of 

Lyapunov function is expressed in terms of  .


  ≤  ,          (31)

where   denotes the bound of optimal performance index. 

The input saturation is considered similar to the method in 

[14]. This ends the proof. □

4. Numerical Examples

The dynamical equation (8) is considered as

  r     (32)

where

 









   

    
  



 










  
    

  

 










 
 
 



The model parameters are calculated with a sampling 

time 0.8s. The sampling time  is less than 0.8s. Along 

the reference trajectory (     ), the input is 

constrained to ≤  ≤  and 

≤  ≤     . The corresponding 

controller gain matrix is 

 


 


  

  
        (33)

Fig 2 and 3 show the simulation results which are 

obtained with the above controller gain, taking   

     .

Fig. 2 The error response of the system

그림 2 시스템 에러 응답

Fig. 3 The sampled-data control input with constraints

그림 3 입력제한을 고려한 샘플데이타 제어입력

Fig. 4 The trajectory of each robot(   ) at time    

 sec
그림 4 리더와 첫 번째(  )추종 로봇의 시간    

 초에서의 궤적
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5. Conclusions

The sampled-data MPC method for multi-mobile robot 

systems have been investigated by considering polytopic LPV 

model. Based on the quadratic Lyapunov function approach, 

sufficient conditions for the sampled-data MPC controller are 

derived by constructing new looped-functionals. The 

proposed method guarantees a performance and stability in 

much longer sampling delay than the existing paper. The 

effectiveness of the presented method has been verified by 

illustration numerical simulation.
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