• Title/Summary/Keyword: Lead-free soldering

Search Result 46, Processing Time 0.024 seconds

Study on Joining Strength Improvement of Solder Joint with Pb Free Solder (Pb Free 솔더를 사용한 솔더 접합부의 접합 강도 향상에 관한 연구)

  • 신영의;김영탁
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.36-42
    • /
    • 1997
  • In this paper, stability of initial strength at solder joint with lead free solders, such as Sn-In (52-48%) and Sn-Ag (96.5-3.5wt%) was studied. To obtain at solder joint with high quality, it is very important to control the temperature at the interface of solder joints. It is found that the thermal EMF (electro motive force) occurs betwee lead frame and copper pad on a substrate during reflow soldering process using heated tip. As a result of control the temperature at interface of solder joints, variation of initial strength at solder joint decreases from about $\pm40%$ to $\pm20%$, and it is realized Pb free soldering process using Sn/In and Sn-Ag solder paste.

  • PDF

Effects of the Atmosphere on the Comparative Solderability of Lead-Tin and Lead-Free Solders

  • Bin, Jeong-Uk;S.M.Adams;P.F.Stratton
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.45-47
    • /
    • 2001
  • Due to pressure from threatened legislation in Europe, consumer and governmental pressure in Japan, and glob머 market considerations in the US, there is a rapidly growing interest in lead-free solderinger, Although the move to lead free soldering seems inevitable, many problems will arise in production assembly. It is generally acknowledged that the lead-free solders available offer a much s smaller process window than lead/tin, related mainly to the higher soldering temperatures which naturally result from increases of liquidus temperatures of at least 300 C. However, raising reflow temperatures from the current 220-2300 C to 250 2600 C will lead to problems with the boards and components as well as i increasing oxidation effects. There is a need to keep reflow temperatures low without reducing solderablity. Some results on benefits of inert atmospheres are discussed in this paper. For example, testing in a nitrogen atmosphere, with 300 ppm oxygen, by the N National Physical Laboratory (NPU has revealed clear benefits for ine$\pi$mg lead-free alloys, by restoring the solderability to lead/tin levels, by enabling lower soldering temperatures. However, there has been little testing over a range of oxygen levels in nitrogen and this is an important issue in determining n nitrogen supply and oven costs. Some results are reported here from work by NPL conducted for BOC in w which solderability was evaluated for tin기ead and tin/silver/copper eutectic a alloys in a wetting balance over a range of oxygen levels form 10 ppm to 21% ( (air). The studies confirm that acceptable wetting times occur in inert atmospheres a at soldering temperatures 20 to 300 C lower than are possible in air.

  • PDF

Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer (Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링)

  • 문준권;강경인;이재식;정재필;주운홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.

Thermodynamic Issues of Lead-Free Soldering in Electronic Packaging (전자 패키징에 사용되는 무연 솔더에 관한 열역학적 연구)

  • 정상원;김종훈;김현득;이혁모
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • In soldering of electronic packaging, the research on substituting lead-free solder materials for Pb-Sn alloys has become active due to environmental and health concerns over the use of lead. The reliability of the solder joint is very important in the development of solder materials and it is known that it is related to wettability of the solder over the substrate and microstructural evolution during soldering. It is also highly affected by type and extent of the interfacial reaction between solder and substrate and therefore, it is necessary to understand the interfacial reaction between solder and substrate completely. In order to predict the intermetallic compound (IMC) phase which forms first at the substrate/solder interface during the soldering process, a thermodynamic methodology has been suggested. The activation energy for the nucleation of each IMC phases is represented by a function of the interfacial energy and the driving force for phase formation. From this, it is predicted that the IMC phase with the smallest activation energy forms first. The grain morphology of the IMC at the solder joint is also explained by the calculations which use the energy. The Jackson parameter of the IMC grain with a rough surface is smaller than 2 but it is larger than 2 in the case of faceted grains.

  • PDF

Cu Corrosion Test Method for Lead-Free Solders (무연솔더 동판부식 시험법 연구)

  • Kim, Mi-Song;Hong, Won Sik;Oh, Chul Min;Kim, Keun-Soo
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.21-27
    • /
    • 2017
  • A soldering temperature of ($235{\pm}3$) $^{\circ}C$ is described in ISO 9455-15 for the copper corrosion test. However, this temperature is not suitable for performing lead-free solder pastes. We evaluated the compatibility of a lead-free solder paste in the experimental conditions of (Liquidus temperature + ($35{\pm}3$)) $^{\circ}C$. Based on the results after a Cu corrosion test, a proper temperature for Pb-free soldering was (melting point+($35{\pm}3$)) $^{\circ}C$. Criteria used to evaluate corrosion due to discoloration of flux residue is described in ISO 9455-15, but a more quantitative evaluation standard is needed. In this study, experimental error level was estimated by analyzing flux residue after a corrosion test for 72, 500 hours of specimens using EDS analysis with acceleration voltage. It was determined that the copper area at the flux residue boundary is suitable for the EDS analysis area.

Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste (전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

A study on the implementation of wave soldering process and the solder joint reliability of it using Sn-Cu-Ni lead-free solder (Sn-Cu-Ni계를 이용한 Pb-free wave Soldering의 공정 적용 및 신뢰성에 관한 연구)

  • 유충식;정종만;김진수;김미진
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.89-98
    • /
    • 2001
  • Pb-free wave soldering process of AC Adapter was implemented by six sigma method using Sn-Cu-Ni type solder. The solder joint appearance, microstructural change, a lift-off phenomenon and reliability were evaluated through thermal shock teal. $(Cu,Ni)_6Sn_5$-type intermetallic compound of which thickness is about 5 micron was found at solder joint between Sn-Cu-Ni solder and copper land. After applying the thermal shock test of as-soldered product up to 750 cycles, no crack was found at the solder joint and the newly developed product was superior to conventions; one in terms of productivity and reliability.

  • PDF