• Title/Summary/Keyword: Lead ball

Search Result 135, Processing Time 0.024 seconds

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF

Analysis of Spasticity and Balance of Lower Extremity on Swiss Ball Lumbar Stabilization Exercise(LSE) in Patients with Stroke (스위스볼 요부안정화운동에 따른 뇌졸중 환자 하지의 경직도와 균형 분석)

  • Ko, Dae-Sik;Kim, Chan-Kyu;Jung, Dae-In
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.262-270
    • /
    • 2011
  • This study examines the effects of spasticity, equilibrium and gait ability at lower extremity on lumbar stabilization exercise(LSE) with Swiss ball. This experiment was conducted to compare BBS, FRT, MAS and TUG by Swiss ball LSE with 34 stroke patients. equilibrium by BBS or FRT, spasticity by MAS and gait ability by TUG were measured after a 8-week traditional exercise physical therapy(17 subject of stroke patient) and a Swiss ball LSE(17 subject of stroke patient). These result lead us to the conclusion that BBS & FRT were statistically increased and MAS and TUG were decreased on Swiss ball LSE group. there were statistically differential effect between each group on FRT and MAS. These results suggest that Swiss ball LSE has the capability to improve spasticity, equilibrium and gait ability at lower extremity. Consequently, Swiss ball LSE would be lead to restoration of muscle spasticity, equilibrium and gait ability on stroke patients.

The Characteristics of High Speed Feed Drive System using High Lean Screw (High Lead Ball Screw를 사용한 고속이송계의 특성)

  • 고해주;박성호;정윤교
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • The study on the high-speed machine tool is very important for the improvement of productivity since it can shortens cutting and non-cutting time. Especially, high speed of feed drive system is the major research field. In the industries of the advanced countries, the feed drive systems at the speed of 60 m/min have been already developed based on the high lead ball screws. In this study, a high speed feed drive system at the speed of 60 m/ min has been developed, and its movements characteris-tics are investigated. As the movement characteristics, positioning accuracy, angular accuracy, straightness and micro step-response are measured. Thermal characteristics of the system is also discussed. For measuring the movement characteris-tics, a laser interferometer, a memory-based Hi-coder and a cooling device are used. The experimental results confirm that the movement characteristics and the thermal behavior of the system are satisfactory in the aspect of accuracy and stability.

  • PDF

Evaluation of Shear Strength of a Miniature Lead-free Single Solder Ball Joint (초소형 무연 단일 솔더볼 연결부의 전단강도 평가)

  • Joo, Se-Min;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.14-21
    • /
    • 2010
  • A miniature single solder ball joint is designed to mimic the actual solder joints used in the micro-electric industries. Shear tests were conducted to evaluate the mechanical behavior of miniature single solder joints at intermediate strain rates from $0.019\;s^{-1}$ to $2.16\;s^{-1}$ at room temperature. The shear fracture strength of the present solder ball joints generally increased with increasing shear strain rate, ranging from 32 to 51MPa. This behavior is affected by the sensitivity of bulk solder strength to strain rate. Shear fracture mode changed from brittle to partial ductile (failure inside the bulk solder) with an increase of shear speed. The unloading shear fracture toughness is generally consistent with the measure of the amount of bulk solder on the fractured surface.

The Low Height Looping Technology for Multi-chip Package in Wire Bonder (와이어 본더에서의 초저 루프 기술)

  • Kwak, Byung-Kil;Park, Young-Min;Kook, Sung-June
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

The Specficity of Phase Transitions of Lead Monoxide (산화납의 특이상전이)

  • 김정욱;최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.623-628
    • /
    • 1993
  • Lead monoxide has two phases at room temperature. One is a yellow orthorhombic phase, the other is a redtetragonal phase. Sometimes two phases are hybrided. The specificity of phase transitions of lead oxide is found during the milling of the batch including lead oxide. The pure orthorhombic phase of PbO can be transformed to the tetragonal phase perfectly by wet ball milling (milling liquid is distilled water) without thermal energy. However, when ethyl alcohol, isopropyl alcohol and aceton are used as milling liquid, respectively, the hybrid form of orthorhombic andtetragonal phases is obtained by wet ball milling. From the hybrid form heat-treated at $600^{\circ}C$ for 3hrs, this work results that mechanical phase transition of orthorhombic phase make a new form as distorted type orthorhombic phase of PbO.

  • PDF

A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact (저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구)

  • 손세원;이두성;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF