• 제목/요약/키워드: Leaching resistance

검색결과 56건 처리시간 0.026초

Effect of Copper Retention on Copper Leaching in Wood Treated with Copper-based Preservatives

  • Ra, Jong-Bum;Kang, Sung-Mo;Kang, Shin-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권5호
    • /
    • pp.421-425
    • /
    • 2009
  • This research investigates the effect of copper retention on copper leaching in wood treated with copper-based preservatives. Radiata pine (Pinus radiata D. Don) sapwood samples were ground in a Wiley mill equipped with a 20-mesh screen. The ground wood was vacuum-treated with various concentrations of alkaline copper quat (ACQ), bis-(N-cyclohexyl-diazeniumdioxy)-copper (CB-HDO), and copper azole (CUAZ). The treated samples were conditioned at $70^{\circ}C$ and 100% RH for 72 hours. The samples were leached by using the distilled water for four weeks, and the copper contents in each sample were measured by X-ray spectroscopy. As expected, the copper leaching was increased with increasing of copper retention. The copper leaching from the ACQ and CB-HDO treated samples were gradually decreased with increasing copper retention: however, the copper losses from the CUAZ treated samples appeared to be proportionally increased with the increase in copper retention in all retention levels tested. The results indicate that at the conditions of the same copper retention ACQ and CB-HDO treated wood have a better leaching resistance compared to CUAZ treated wood.

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

Investigation on alkalinity of pore solution and microstructure of hardened cement-slag pastes in purified water

  • Hu, Ya-Ru;Zuo, Xiao-Bao;Li, Xiang-Nan;Jiang, Dong-Qi
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.507-515
    • /
    • 2021
  • To evaluate the influence of slag on the alkalinity of pore solution and microstructure of concrete, this paper performs a leaching experiment on hardened cement-slag pastes (HCSP) slice specimens with different slag content in purified water. The pH value of pore solution, average porosity, morphology, phase composition and Ca/Si of HCSP specimens in the leaching process are measured by solid-liquid extraction, saturated-dried weighing, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and X-ray diffraction (XRD). Results shows that the addition of slag can mitigate an increase in porosity and a decrease in Ca/Si of HCSP in the leaching process. Besides, an appropriate slag content can improve the microstructure so as to obtain the optimum leaching resistance of HCSP, which can guarantee the suitable alkalinity of pore solution to prevent a premature corrosion of reinforced bar. The optimum slag content is 40% in HCSP with a water-binder ratio of 0.45, and an excessive slag causes a significant decrease in the alkalinity of pore solution, resulting in a loss of protection on reinforced bar in HCSP.

분상법을 이용한 봉규산염계 다공질 유리의 제조 및 특성;$ZrO_2$와 MgO 첨가 영향 (Preparation and Characterization of Porous Glass in $Na_2O-B_2O_3-SiO_2$ System ; Addition Effects of $ZrO_2$ and MgO)

  • 김영선;최세영
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.385-393
    • /
    • 1995
  • Akali-resistant porous glass was prepared by phase separation in Na2O-B2O3-SiO2 system containing ZrO2 and MgO. ZrO2 was added for alkali-resistance and MgO for anti-cracking during leaching. Optimal content of ZrO2 for alkali-resistance was 7wt% and devitrification by heat treatment resulted from further addition. Pore size and pore volume were decreased and specific surface area was increased with ZrO2 addition due to depression in phase separation. Addition of 3mol% MgO to mother glass containing 7wt% ZrO2 was effective for anti-crack during leaching. In this case, with phase separation at 55$0^{\circ}C$ and 5$25^{\circ}C$ for 20 hrs. crack-free porous glasses could be prepared. The relation between pore size r and heat treatment time t at 55$0^{\circ}C$ was D=25.58+18.16t. According to measurement of gas permeability, the mechanism of gas permeation was Knudsen flow. N2 and He permeability of porous glass which was prepared by heat treatment at 55$0^{\circ}C$ for 20 hrs. were 0.843$\times$10-7mol/$m^2$.s.Pa and 2.161$\times$10-7mol/$m^2$.s.Pa respectively.

  • PDF

Service Life Estimation of ACQ-treated Wood Based on Biodeterioration Resistance

  • Pang, Sung-Jun;Hong, Jung-Pyo;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.641-651
    • /
    • 2015
  • The aim of this study was to estimate the service life of alkaline copper quaternary (ACQ)-treated wood. The service life of preservative-treated wood was estimated by comparing a residual quantity of ACQ in wood with toxic threshold to fungi. Indoor and outdoor leaching tests were carried out in order to predict residual ACQ quantity within wood. As a result, the leaching ratio of ACQ from treated wood above ground via precipitation was 18.1% for 50 years. When the H4 treated wood, which is traditionally used in contact with the ground and fresh water, is used above-ground, the leaching ratio of ACQ for 50 years is 18.1% and the residual quantity of ACQ is $4.2kg/m^3$, which is higher than the toxic threshold of ACQ. Thus, the H4 treated wood used above-ground will be resistant to biodeterioration for at least 50 years.

원전 폐콘크리트의 방사성 폐기물 처분용 고화제로의 활용을 위한 고화체 특성 평가 (Characteristics Evaluation of Solidifying Agent for Disposal of Radioactive Wastes Using Waste Concrete Powder)

  • 서은아;이호재;권기현;김도겸
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.451-459
    • /
    • 2021
  • 이 연구에서는 원전 해체 콘크리트에서 분리된 폐콘크리트 미분말을 방사성 폐기물용 고화제로 재활용하기 위한 성능평가를 수행하였다. 원전 해체 콘크리트에서 분리된 폐콘크리트 미분말을 모사한 시료를 제작하였으며, 주요 변수는 결합재 종류와 제올라이트 혼입율이었다. 고화제 특성평가는 유동성과 압축강도 및 비방사성 세슘에 대한 침출 저항성을 수행하였다. 폐콘크리트 모사시료의 압축강도는 제올라이트 혼입율이 증가함에 따라 증가하였으며, 제올라이트가 5% 이상 혼입된 고화제는 인수기준 대비 1.4~1.7배 높은 압축강도를 나타내었다. 모든 시험체의 세슘 침출지수는 6 이상으로 인수기준을 만족하였으며, SA의 침출지수는 OPC 대비 1.47~1.63배 높게 나타났다. 특히, 제올라이트 5% 치환 고화제의 28일 이후 평균 침출지수는 9.15으로 OPC 대비 약 6.4% 향상되었으며, 전 기간 동안 안정적인 성능을 나타내어 제올라이트가 세슘이온에 대한 침출저항성 향상에 효과적임을 확인하였다.

Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

  • Kim, Chul-Joo;Yoon, Ho-Sung;Chung, Kyung Woo;Lee, Jin-Young;Kim, Sung-Don;Shin, Shun Myung;Kim, Hyung-Seop;Cho, Jong-Tae;Kim, Ji-Hye;Lee, Eun-Ji;Lee, Se-Il;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.46-52
    • /
    • 2015
  • A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid ($H_2SO_4$) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of $H_2SO_4$ was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol $H_2SO_4$, and the effect of temperatures was investigated under the condition of 30 to $80^{\circ}C$. As a result, praseodymium oxide ($Pr_6O_{11}$) existing in the slag was completely converted into praseodymium sulfate ($Pr_2(SO_4)_3{\cdot}8H_2O$) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be $9.195kJmol^{-1}$. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be $19.106kJmol^{-1}$. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.