• Title/Summary/Keyword: Layered soil

Search Result 293, Processing Time 0.03 seconds

A Characteristic of Freeze and Thaw on Use for Stabilized Soil in Landfill Bottom Liners (매립지 바닥층의 고화토 포설시 동결/융해의 특성)

  • Kim, Heung-Seok;Lee, Song;Lee, Jai-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Recently, Korea brings to remarkable levels about industrialization, modernization, population and development of technology. Especially, the rapidly growing from this technology has increased the burden on existing industrial waste landfills. The purpose of this research is to existing knowledge base of landfill cover liner behavior during periods freeze/thaw. Although these tests have been invaluable in clarifying the problem of freeze/thaw, extending the results of such experimental studies to prototype landfills are questionable. For this investigation, the author utilized a large scale laboratory simulation allowing inclusion of the field depth of the cover systems, layered soil profiles, rainfall simulation, a cold climate and boundary conditions similar to those encountered in the landfill. And the soil materials used stabilized soils (mixed clays, cements, and minerals) instead of clays. The bottom liners are made up of drainage layer (30cm), stabilized layer (75cm), and leach collection layer (60cm). The stabilized layers are made up of supporting layer (45cm) and impermeable layer (30cm) - consisted of $P_A$ and $P_B$ layer.

  • PDF

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Two-Dimensional Infinite Element for Dynamic Analysis of Saturated Two-Phase Soil (포화된 2상 지반의 동적해석을 위한 2차원 무한요소)

  • Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.67-74
    • /
    • 2005
  • This paper presents a new infinite element for modeling far-field region in dynamic analysis of a fluid-saturated two-phase medium. The infinite element method combined to the infinite element method has been effectively applied to several engineering problems where the full space or half-space medium should be modeled. However, the currently available infinite element for dynamic analysis of two-phase porous medium has a limitation that Pl and P2 waves can only be Included in shape function expressing behavior ol the body. In this paper, the infinite element method is extended to simulate arbitrary number of multi-component waves. For this purpose, the far-field of the porous medium is assumed to be a layered half-space, while the near-field Includes structures as well as irregular soil medium. The accuracy and effectiveness of the proposed element have demonstrated using 1-D and 2-D wave propagation problems.

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

S.D.O.F Macro-element for Interaction of Deep Foundation (단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델)

  • Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • In this paper single degree of freedom macro-element model was presented to investigate the interaction between soil and the deep foundation under the lateral loads. It was made by modelling each component related to the soil-structure interaction and combining them into one piece. It enhanced the conventional method that was not able to break down the interaction components in piece due to the usage of simple spring element for interaction. A proposed macro-element classified the stress components in relation to the interaction into frictional and compressive resistance. Each component was modelled using the classical plasticity theory, and finally combined in parallel. An example study was carried out using the proposed macro-element for deep foundation embedded in three layered cohesive soil. It showed improved results compared to the conventional method by producing additional information of the interaction components as well as the overall behavior of foundation.

Growth Characteristics of Ginseng Seedling Transplanting by Self Soil Nusery, Nursery or Hydroponic Culture on Main Field (토직, 상토 및 양액육묘에 의해 생산된 묘삼의 본포 이식 후 생장특성)

  • Park, Hong Woo;Song, Jeong Ho;Kwon, Ki Bum;Lee, Ueong Ho;Son, Ho Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.238-243
    • /
    • 2017
  • Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2-year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 kg/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 cm for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

Wave-Induced Response of Unsaturated and Multi-layered Seabed; A Semi-analytical Method (파랑으로 인한 불포화된 다층 해저지반의 거동;준해석적 방법)

  • ;Rahman, M. S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.45-55
    • /
    • 1999
  • Wave-induced response, liquefaction and stability of unsaturated seabed are studied. The unsaturated seabed is modeled as a fluid-filled polo-elastic medium. The coupled process of fluid flow and the deformation of soil skeleton is formulated in the framework of Biot's theory. The resulting governing equations are solved using a semi-analytical method to evaluate the stresses and pore water pressure of unsaturated and multi-layered seabed. The semi-analytical method can be applied to calculate a pore pressure and the stresses of in anisotropic inhomogeneous seabed. The results indicate that the degree of saturation influences mostly on the magnitudes of a pore pressure and the stresses of unsaturated and multi-layed seabed. Based on the pore pressure and stresses in seabed, the analysis on the possibilities of liquefaction and shear failure was performed. The results show that the maximum depth of shear failure occurrence is deeper than the maximum liquefaction depth.

  • PDF

Classification of Crop Lands over Northern Mongolia Using Multi-Temporal Landsat TM Data

  • Ganbaatar, Gerelmaa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.611-619
    • /
    • 2013
  • Although the need of crop production has increased in Mongolia, crop cultivation is very limited because of the harsh climatic and topographic conditions. Crop lands are sparsely distributed with relatively small sizes and, therefore, it is difficult to survey the exact area of crop lands. The study aimed to find an easy and effective way of accurate classification to map crop lands in Mongolia using satellite images. To classify the crop lands over the study area in northern Mongolia, four classifications were carried out by using 1) Thematic Mapper (TM) image August 23, 2) TM image of July 6, 3) combined 12 bands of TM images of July and August, and 4) both TM images of July and August by layered classification. Wheat and potato are the major crop types and they show relatively high variation in crop conditions between July and August. On the other hands, other land cover types (forest, riparian vegetation, grassland, water and bare soil) do not show such difference between July and August. The results of four classifications clearly show that the use of multi-temporal images is essential to accurately classify the crop lands. The layered classification method, in which each class is separated by a subset of TM images, shows the highest classification accuracy (93.7%) of the crop lands. The classification accuracies are lower when we use only a single TM image of either July or August. Because of the different planting practice of potato and the growth condition of wheat, the spectral characteristics of potato and wheat cannot be fully separated from other cover types with TM image of either July or August. Further refinements on the spatial characteristics of existing crop lands may enhance the crop mapping method in Mongolia.

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.