• Title/Summary/Keyword: Layered inorganic material

Search Result 15, Processing Time 0.164 seconds

Characterization of Polymer and Nano-MMT-composite as Binder of Recycled-Pet Polymer Concrete (폴리머콘크리트의 결합제로서 PET재활용 폴리머와 나노 MMT 복합체의 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.292-295
    • /
    • 2004
  • Recently, polymer-clay hybrid materials have received considerable attention from both a fundamental research and application point of view. This organ-inorganic hybrid, which contains a nanoscale dispersion of the layered silicates, is a material with greatly improved thermal and mechanical characteristics. Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X -ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. Adding organically modified clay improved the tensile strength of unsaturated polyester by $22\%$ and the tensile modulus of unsaturated polyester was also improved by $34\%$.

  • PDF

Analysis of Multi-layered Thin Film Using ATR FT-IR and pyro-GC/MS (ATR FT-IR과 pyro-GC/MS를 이용한 다층박막필름의 분석)

  • Park, Sung Il;Lee, Jung-Hyun;Lee, Myung Cheon
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.102-109
    • /
    • 2019
  • The material constitution of multi-layered thin film coated on the PET base film was analyzed using ATR FT-IR and pyro GC/MS combination. The cross section of the film was acquired by cracking the film after dipping in liquid nitrogen and was observed using optical microscope. Total thickness of the coated film was $70{\mu}m$ and three layers were observed. Since each layers were too thin to analyze directly except the surface layer, analyzable area of each layers were exposed by using a proper solvent and were investigated using ATR FT-IR and pyro GC/MS. Results shows that three layers were commonly consisted of urethane-acrylate copolymers. Also, inorganic and/or metal inclusions detected by XPS and SEM-EDAX were exhibited by nano size $SiO_2$ particles in layer(1) and aluminum flakes in layer(2).

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Research trends of MXenes as the Next-generation Two-dimensional Materials (차세대 2차원 소재, MXenes의 연구 동향)

  • Lee, Hojun;Yun, Yejun;Jang, Jinkwang;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.150-163
    • /
    • 2021
  • Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.

Development trends of Solar cell technologies for Small satellite (소형위성용 태양전지 개발 동향 및 발전 방향)

  • Choi, Jun Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.310-316
    • /
    • 2021
  • Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.