• Title/Summary/Keyword: Layered heterogeneity

Search Result 17, Processing Time 0.021 seconds

MediaCloud: A New Paradigm of Multimedia Computing

  • Hui, Wen;Lin, Chuang;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1153-1170
    • /
    • 2012
  • Multimedia computing has attracted considerable attention with the rapid growth in the development and application of multimedia technology. Current studies have attempted to support the increasing resource consumption and computational overhead caused by multimedia computing. In this paper, we propose $MediaCloud$, a new multimedia computing paradigm that integrates the concept of cloud computing in handling multimedia applications and services effectively and efficiently. $MediaCloud$ faces the following key challenges: heterogeneity, scalability, and multimedia Quality of Service (QoS) provisioning. To address the challenges above, first, a layered architecture of $MediaCloud$, which can provide scalable multimedia services, is presented. Then, $MediaCloud$ technologies by which users can access multimedia services from different terminals anytime and anywhere with QoS provisioning are introduced. Finally, $MediaCloud$ implementation and applications are presented, and media retrieval and delivery are adopted as case studies to demonstrate the feasibility of the proposed $MediaCloud$ design.

DOVE : A Distributed Object System for Virtual Computing Environment (DOVE : 가상 계산 환경을 위한 분산 객체 시스템)

  • Kim, Hyeong-Do;Woo, Young-Je;Ryu, So-Hyun;Jeong, Chang-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.120-134
    • /
    • 2000
  • In this paper we present a Distributed Object oriented Virtual computing Environment, called DOVE which consists of autonomous distributed objects interacting with one another via method invocations based on a distributed object model. DOVE appears to a user logically as a single virtual computer for a set of heterogeneous hosts connected by a network as if objects in remote site reside in one virtual computer. By supporting efficient parallelism, heterogeneity, group communication, single global name service and fault-tolerance, it provides a transparent and easy-to-use programming environment for parallel applications. Efficient parallelism is supported by diverse remote method invocation, multiple method invocation for object group, multi-threaded architecture and synchronization schemes. Heterogeneity is achieved by automatic data arshalling and unmarshalling, and an easy-to-use and transparent programming environment is provided by stub and skeleton objects generated by DOVE IDL compiler, object life control and naming service of object manager. Autonomy of distributed objects, multi-layered architecture and decentralized approaches in hierarchical naming service and object management make DOVE more extensible and scalable. Also,fault tolerance is provided by fault detection in object using a timeout mechanism, and fault notification using asynchronous exception handling methods

  • PDF

Design and Implementation of A Distributed Information Integration System based on Metadata Registry (메타데이터 레지스트리 기반의 분산 정보 통합 시스템 설계 및 구현)

  • Kim, Jong-Hwan;Park, Hea-Sook;Moon, Chang-Joo;Baik, Doo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.233-246
    • /
    • 2003
  • The mediator-based system integrates heterogeneous information systems with the flexible manner. But it does not give much attention on the query optimization issues, especially for the query reusing. The other thing is that it does not use standardized metadata for schema matching. To improve this two issues, we propose mediator-based Distributed Information Integration System (DIIS) which uses query caching regarding performance and uses ISO/IEC 11179 metadata registry in terms of standardization. The DIIS is designed to provide decision-making support, which logically integrates the distributed heterogeneous business information systems based on the Web environment. We designed the system in the aspect of three-layer expression formula architecture using the layered pattern to improve the system reusability and to facilitate the system maintenance. The functionality and flow of core components of three-layer architecture are expressed in terms of process line diagrams and assembly line diagrams of Eriksson Penker Extension Model (EPEM), a methodology of an extension of UML. For the implementation, Supply Chain Management (SCM) domain is used. And we used the Web-based environment for user interface. The DIIS supports functions of query caching and query reusability through Query Function Manager (QFM) and Query Function Repository (QFR) such that it enhances the query processing speed and query reusability by caching the frequently used queries and optimizing the query cost. The DIIS solves the diverse heterogeneity problems by mapping MetaData Registry (MDR) based on ISO/IEC 11179 and Schema Repository (SCR).

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases

  • Ahmad, Qazi Adnan;Wu, Guochen;Zong, Zhaoyun;Wu, Jianlu;Ehsan, Muhammad Irfan;Du, Zeyuan
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-338
    • /
    • 2020
  • The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.

Development of an Organism-specific Protein Interaction Database with Supplementary Data from the Web Sources (다양한 웹 데이터를 이용한 특정 유기체의 단백질 상호작용 데이터베이스 개발)

  • Hwang, Doo-Sung
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1091-1096
    • /
    • 2002
  • This paper presents the development of a protein interaction database. The developed system is characterized as follows. First, the proposed system not only maintains interaction data collected by an experiment, but also the genomic information of the protein data. Secondly, the system can extract details on interacting proteins through the developed wrappers. Thirdly, the system is based on wrapper-based system in order to extract the biologically meaningful data from various web sources and integrate them into a relational database. The system inherits a layered-modular architecture by introducing a wrapper-mediator approach in order to solve the syntactic and semantic heterogeneity among multiple data sources. Currently the system has wrapped the relevant data for about 40% of about 11,500 proteins on average from various accessible sources. A wrapper-mediator approach makes a protein interaction data comprehensive and useful with support of data interoperability and integration. The developing database will be useful for mining further knowledge and analysis of human life in proteomics studies.

H.263-Based Scalable Video Codec (H.263을 기반으로 한 확장 가능한 비디오 코덱)

  • 노경택
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.29-32
    • /
    • 2000
  • Layered video coding schemes allow the video information to be transmitted in multiple video bitstreams to achieve scalability. they are attractive in theory for two reasons. First, they naturally allow for heterogeneity in networks and receivers in terms of client processing capability and network bandwidth. Second, they correspond to optimal utilization of available bandwidth when several video qualify levels are desired. In this paper we propose a scalable video codec architectures with motion estimation, which is suitable for real-time audio and video communication over packet networks. The coding algorithm is compatible with ITU-T recommendation H.263+ and includes various techniques to reduce complexity. Fast motion estimation is Performed at the H.263-compatible base layer and used at higher layers, and perceptual macroblock skipping is performed at all layers before motion estimation. Error propagation from packet loss is avoided by Periodically rebuilding a valid Predictor in Intra mode at each layer.

  • PDF