• Title/Summary/Keyword: Layered direct fabrication

Search Result 7, Processing Time 0.02 seconds

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Numerical Analysis of UV Laser Patterning of Polymeric Thin-Film (자외선 레이저를 이용한 폴리머 박막 가공의 수치해석)

  • Oh, B.K.;Lee, S.K.;Song, M.K.;Kim, J.W.;Hong, S.K.
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • Conventional patterning based on wet-process for multi-layered film is a relatively complex and costly process though it is a necessary step for fabrication of TFT-LCD module. Recently, a direct pattering by laser has been studied because it is low cost and simple process compared to the wet process. In this work, the selective removal process of multi-layered film (polyimide/indium tin oxide/glass) is studied by modeling the thermal and mechanical behavior for multi-layered structure. Especially, the effects of thickness of polyimide layer are examined.

  • PDF

Characteristics of Laser Aided Direct Metal Powder Deposition Process for Nickel-based Superalloy

  • Zhang, Kai;Liu, Weijun;Shang, Xiaofeng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.521-522
    • /
    • 2006
  • Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.

  • PDF

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

Low-Voltage Operating N-type Organic Field-Effect Transistors by Charge Injection Engineering of Polymer Semiconductors and Bi-Layered Gate Dielectrics (N형 고분자 반도체의 전하주입 특성 향상을 통한 저전압 유기전계효과트랜지스터 특성 연구)

  • Moon, Ji-Hoon;Baeg, Kang-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.665-671
    • /
    • 2017
  • Herein, we report the fabrication of low-voltage N-type organic field-effect transistors by using high capacitance fluorinated polymer gate dielectrics such as P(VDF-TrFE), P(VDF-TrFE-CTFE), and P(VDF-TrFE-CFE). Electron-withdrawing functional groups in PVDF-based polymers typically cause the depletion of negative charge carriers and a high contact resistance in N-channel organic semiconductors. Therefore, we incorporated intermediate layers of a low-k polymerto prevent the formation of a direct interface between PVDF-based gate insulators and the semiconducting active layer. Consequently, electron depletion is inhibited, and the high charge resistance between the semiconductor and source/drain electrodes is remarkably improved by the in corporation of solution-processed charge injection layers.

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.