• Title/Summary/Keyword: Layered beam

Search Result 164, Processing Time 0.023 seconds

Dynamic Equivalent Continuum Modeling of a Box-Beam Typed Wing (Box-Beam 형상 날개의 동적 등가연속체 모델링에 관한 연구)

  • 이우식;김영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2704-2710
    • /
    • 1993
  • A simple and straightforward method is introduced for developing continuum beam-rod model of a box-beam typed aircraft wing with composite layered skin based on "energy equivalence." The equivalent continuum structral properties are obtained from the direct comparison of the reduced stiffness and mass matrices for box-beam typed wing with those for continuum beam-rod model. The stiffness and mass matrices are all represented in terms of the continuum degrees-of freedom defined in this paper. The finite-element method. The advantage of the present continuum method is to give every continuum structural properties including all possible coupling terms which represent the couplings between different deformations. To evaluate the continuum method developed in this paper, free vibration analyses for both continuum beam-rod and box-beam are conducted. Numerical tests show that the present continuum method gives very reliable structural and dynamic properties compared to the results by the conventional finite-element analysis. analysis.

Spectral Element Analysis of a PCLD beam (수동적층보의 스펙트럴요소 해석)

  • You, Sung-Jun;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.619-624
    • /
    • 2007
  • Spectral element method (SEM) is introduced for the fully coupled structural dynamic problems, In this paper, the beam with passive constrained layered damping (PCLD) treatments is considered as a representative problems. The beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an elastic layer, The fully coupled equations of motion for a PCLD beam are derived, The equations of motion are derived first by using Hamilton's principle, From this equations of motion, the spectral element is formulated for the vibration analysis by use of the SEM, As an illustrative example, a cantilevered beam is considered. It is shown that, as the thickness of VEM layer vanishes, the results become a simple layer beam's that.

  • PDF

A Study on the Effect of the Thickness of Bond Coating on the Thermal Stresses of a Sprayed Thermal Barrier Coating (접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향에 관한 연구)

  • 김형남
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.221-227
    • /
    • 2001
  • Based on the principle of complementary energy, an analytical method is developed which focuses on the end effects for determining thermal stress distributions in a three-layered beam. This method gives the stress distributions which completely satisfy the stress-free boundary conditions. A numerical example is given in order to verify this method. The results show that the present analytical solutions have the values of stress in excellent agreement with the solutions derived by other investigators. Using this method, the effects of the thickness of bond coat on the thermal stresses of a typical sprayed thermal barrier coating, which consists of IN738LC substrate, MCrAIY bond coat and ZrO$_2$-8wt%Y$_2$O$_3$top coat, were investigated.

  • PDF

A Study on Optimization of a Multi-Layered Metallic Disk Array Structure for Shaping of Flat-Topped Element Patterns (구형 빔 패턴 형성을 위한 다층 원형 도체 배열 구조의 최적화 연구)

  • 엄순영;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.985-995
    • /
    • 2003
  • In this paper, a study on optimization of three dimensional multi-layered metallic disk array structure(MDAS) excited by circular waveguides was performed to shape efficient flat-topped element patterns(FTEP) of ${\pm}$20$^{\circ}$ beam width. Each radiating element of the MDAS is composed of input, transition and radiation circular waveguides and finite metal disks stacked on radiation circular waveguide. It has an array structure of a hexagonal lattice appropriate for the conical beam scanning. The analytic algorithm for the MDAS was proposed and the code was also programmed using it. Optimal design parameters of the MDAS were determined through the optimal simulation process to obtain ${\pm}$20$^{\circ}$ FTEP. Also, bandwidth characteristics for FTEP and reflection coefficients of the MDAS were investigated and, as the results, it was shown that the MDAS could shape good FTEPs of ${\pm}$20$^{\circ}$ beam width in main planes at least within a 5.6 % frequency band.

Analysis of natural frequencies of delaminated composite beams based on finite element method

  • Krawczuk, M.;Ostachowicz, W.;Zak, A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.243-255
    • /
    • 1996
  • This paper presents a model of a layered, delaminated composite beam. The beam is modelled by beam finite elements, and the delamination is modelled by additional boundary conditions. In the present study, the laminated beam contains only one delaminated region through the thickness direction which extends to the full width of the beam. It is also assumed that the delamination is open. The influence of the delamination length and position upon changes in the bending natural frequencies of the composite laminated cantilever beam is investigated.

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.

Back Analysis of the Earth Wall in Multi-layered Subgrade (다층지반에 근입된 흙막이 벽의 역해석에 관한 연구)

  • 이승훈;김종민;김수일;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • This paper presents a back-calculation technique leer the prediction of the behavior of earth wall inserted in multi-layered soil deposit. The soil properties are back-calculated from the measured displacement at each construction stage and the behavior of earth wall far the next construction stage is predicted using back-calculated soil properties. For multi-layered soil deposit, the back-calculation would be very difficult due to the increase in the number of variables. In this study, to solve this difficulty, the back-calculation was performed successively from the lowest layer to the upper layers. An efficient elasto-plastic beam-column analysis was used for forward analysis to minimize the computation time of iterative back-calculation procedure. The coefficients of subgrade reaction and lateral earth pressure necessary for the formation of p-y curve were selected as back calculation variables, and to minimize the effect of abnormal behavior of the wall which might be caused by any unexpected action during construction, the difference between measured displacement increment and computed displacement increment at each construction stages is used as the objective function of optimization. The constrained sequential linear programming was used for the optimization technique to found values of variables minimizing the objective function. The proposed method in this study was verified using numerically generated data and measured field data.

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

Study of the Structure Change on Ion-Beam-Mixed CoPt Alloys.

  • Son, J.H.;Lee, Y.S.;Lim, K.Y.;Kim, T.G.;Chang, G.S.;Woo, J.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.135-136
    • /
    • 1998
  • By the ion bombardment the original discrete layered structure is damaged and a uniformly mixed layer is formed by the intermixing of the films. Immediately after this dynamic cascade mixing a structure of this mixed layer is likely to be a mixture of randomly distributed atoms. Subsequently the mixed layered structure becomes a non-equilibrium structure such as the metastable pphase because the kinetic energies of the incident ions rappidly dissippate and host atoms within the collision cascade region are quenched from a highly energetic state. The formation of the metastable transition metal alloys using ion-beam-mixing has been extensively studied for many years because of their sppecific ppropperties that differ from those of bulk materials. in ion-beam-mixing the alloy or comppound is formed due to the atomic interaction between different sppecies during ion bombardment. in this study the metastable pphase formed by ion-beam-mixing pprocess is comppared with equilibrium one by arc-melting method by GXRD and XAS. Therfore we studied the fundamental characteristics of charge redistribution uppon alloying and formation of intermetallic comppounds. The multi-layer films were depposited on a wet-oxidized Si(100) substrate by sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr during depposition. These compprise 4 ppairs of Co and ppt layers where thicknesses of each layer were varied in order to change the alloy compposition.

  • PDF