• 제목/요약/키워드: Layered Manufacturing Technology

검색결과 65건 처리시간 0.025초

구성형태(構成形態)와 구성비율별(構成比率別)로 제조(製造)한 슬러지-파티클보드의 물리적(物理的) 및 기계적(機械的) 성질(性質) (Physical and Mechanical Properties of Sludge-Particle Board Manufactured by Composition Types and Composition Ratios from Mixed or Layered Paper Sludge and Wood Particle)

  • 이필우;윤형운
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.17-26
    • /
    • 1996
  • This research was accomplished to evaluate possibility of using paper sludge for the raw materials of wood based panel products. The experimental panels were manufactured by four mixed ratios, the proportion of paper sludge to wood particle: 20:80, 30:70, 40:60, 50:50% (oven dry weight basis) and by three composition types, sludge-particle mixed board, three layered sludge-particle board and three layered particle board. They were tested mechanical (bending strength and internal bond) and physical properties (water absorption, thickness swelling and linear expansion). From the results they were shown that bending strength of mixed and three layered sludge-particle board were decreased with increasing of composition ratios of sludge. And the mechanical and physical properties of the boards of three layered composition types have superior to those of mixed composition type. Although composition ratios of sludge increased, the internal bond strength and dimensional stability of sludge-particle board not decreased quantitatively. We concluded that the mechanical and physical properties of three layered sludge-particle board were similar w those of three layered particle-board (control) made by our laboratory design. Therefore, it was recognized that paper sludge can be used as potential raw material in particle-board manufacturing industry.

  • PDF

기능성 경사복합재의 적층조형을 위한 분해기반 공정계획 (Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials)

  • 신기훈;김성환
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템 (PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • 한국CDE학회논문집
    • /
    • 제8권2호
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

중공품 성형시 삼중관의 액압성형성에 미치는 압력경로의 영향 (Effect of Loading Path on the Hydroformability of a Three-layered Tube for Fabrication of a Hollow Part)

  • 한상욱;김상윤;주병돈;문영훈
    • 소성∙가공
    • /
    • 제22권1호
    • /
    • pp.17-22
    • /
    • 2013
  • Tube hydroforming is a technology that utilizes hydraulic pressure to form a tube into desired shapes inside die cavities. Due to its advantages, such as weight reduction, increased strength, improved quality, and reduced tooling cost, single-layered tube hydroforming is widely used in industry. However in some special applications, it is necessary to produce multi-layered tubular components which have corrosion resistance, thermal resistance, conductivity, and abrasion resistance. In this study, a hollow forming process to fabricate a part from multi-layered tubes for structural purposes is proposed. To accomplish a successful hydroforming process, an analytical model that predicts optimal load path for various parameters such as tube material properties, thickness of tubes, diameter of holes and the number of holes was developed. Tubular hydroforming experiments to fabricate a hollow part were performed and the optimal loading path developed by the analytical model was successfully verified. The results show that the proposed hydroforming process can effectively produce hollow parts with multi-layered tube without defects such as wrinkling or fracture.

STL offset을 이용한 다이레스 CNC 포밍용 등고선 공구경로 생성 (Contouring Tool Path Generation for Dieless CNC Forming using STL Offset)

  • 강재관;최동우
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.191-198
    • /
    • 2006
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In this paper, a method of NC tool path generation based on an STL file for dieless CNC forming is proposed. Tool trajectory adopts the principle of layered manufacturing in rapid prototyping technology, but it is necessary to consider STL offset because of the ball shaped tool with a radius. Vertex offset method which enables to compute offset STL directly is engaged for STL offset. The offseted STL is sliced by cutting planes to generate contouring tool path. Algorithm is implemented on a computer and experimented on a dieless CNC forming machine to show its validity.

나노스케일 분자역학을 이용한 다층 그래핀의 굽힘 탄성거동 예측 (Prediction of Elastic Bending Modulus of Multi-layered Graphene Sheets Using Nanoscale Molecular Mechanics)

  • 김대영;한석영
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.421-427
    • /
    • 2015
  • In this paper, a description is given of finite element method (FEM) simulations of the elastic bending modulus of multi-layered graphene sheets that were carried out to investigate the mechanical behavior of graphene sheets with different gap thicknesses through molecular mechanics theory. The interaction forces between layers with various gap thicknesses were considered based on the van der Waals interaction. A finite element (FE) model of a multi-layered rectangular graphene sheet was proposed with beam elements representing bonded interactions and spring elements representing non-bonded interactions between layers and between diagonally adjacent atoms. As a result, the average elastic bending modulus was predicted to be 1.13 TPa in the armchair direction and 1.18 TPa in the zigzag direction. The simulation results from this work are comparable to both experimental tests and numerical studies from the literature.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

글로벌 제조실행시스템을 위한 융합네트워크 구조 (Convergence Network Architecture for Global Manufacturing Execution System)

  • 이태규;신성윤;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.211-214
    • /
    • 2014
  • 제조 생산 기업에서 도입하고 있는 MES (제조실행시스템: Manufacturing Execution System) 역시 이러한 시장 변화에 부응하기 위해 스마트화 및 IT융합화를 실현해야하는 현실에 놓여있다. 더욱이 최근 비즈니스 환경이 글로벌화(globalization) 됨에 따라 지역적으로 하나의 공장에서 제한적으로 생산되는 제품들이 다국적이고 분산적으로 생산하게 된다. 따라서 하나의 공장 운용 시스템을 관장하던 로컬(local) MES가 글로벌(global) MES 솔루션으로 확장되는 동시에, 로컬 MES간 생산 자원(production resource)을 상호 공유하는 시스템으로 변화되어야 한다.

  • PDF

복합재 형상의 FEA기반 설계를 위한 통합 CAD 시스템 (An Integrated CAD System for FEA-based Design of Heterogeneous Objects)

  • 신기훈;김주한
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.328-338
    • /
    • 2005
  • CAD systems are routinely used by designers for creating part geometries. Interfaces to CAE/CAM systems are also commonplace enabling the FEA-based design optimization and the rapid fabrication of the designed part. However, conventional CAD systems have thus far focused on objects with homogeneous interior. Two recent advances--use of heterogeneous objects such as Functionally Graded Materials (FGM) in parts and Layered Manufacturing Technology (LMT)--have brought to the forefront the need for CAD systems to support the creation of geometry as well as the graded material inside. We first describe the need and the components of such a CAD system for heterogeneous objects. A prototype CAD system is then described with one specific example (thermal barrier type FGM, pressure vessel) in order to illustrate the use of the implemented CAD system. The implemented system is manually integrated with FEA tools for optimal design. Our ongoing work involves the automation of the integration with FEA tools.

3차원 입체직물의 특성 및 제조 기술 (Manufacturing and Development of 3D Fabrics)

  • 윤영훈;김대근;박정현;이승걸
    • 한국염색가공학회지
    • /
    • 제30권1호
    • /
    • pp.38-50
    • /
    • 2018
  • This investigation reported the recent development of 3 dimensional fabrics such as spacer fabric, 3 dimensional multi-layered fabric and 3 dimensional braided fabric. First, we categorized 3 dimensional fabrics into 3 main products; 3 dimensional woven fabrics, 3 dimensional knitted fabrics and 3 dimensional braided fabrics with reviewing the possible main applications. We also reported the research and development trends of 3 dimensional fabrics by analyzing technical trends in industry and research institutes at domestic and overseas. United State, Germany and Japan lead the manufacturing technology for the mainly preform related products to apply in aerospace, automotive, protections, architecture and clothing applications. Lastly, we reviewed the main products of the leading company which manufactured using the 3 dimensional fabrics.