• Title/Summary/Keyword: LayerProbe

Search Result 370, Processing Time 0.023 seconds

Developing 500 MHz NB 19F-13C Double Resonance Solid-State NMR Probe for in-situ Analysis of Liquid Crystal Display Panels

  • Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Park, Tae-Joon;Park, Gregory Hyung-Jin;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1577-1580
    • /
    • 2012
  • The orientational and dynamic behavior of liquid crystal molecules on the alignment layer surfaces of liquid crystal display (LCD) devices is crucial to their performance, but there are only a few methods of experimentally elucidating the interactions between the liquid crystals and the alignment layers. Inspired by the natural and technical similarities between membrane proteins in lipid bilayers and liquid crystals in LCDs, we employed solid-state NMR methodologies originally developed for the study of membrane proteins in lipid bilayers for the in-situ analysis of liquid crystal display panels. In this article, we present a home-built 500 MHz narrowbore (NB) The orientational and dynamic behavior of liquid crystal molecules on the alignment layer surfaces of liquid crystal display (LCD) devices is crucial to their performance, but there are only a few methods of experimentally elucidating the interactions between the liquid crystals and the alignment layers. Inspired by the natural and technical similarities between membrane proteins in lipid bilayers and liquid crystals in LCDs, we employed solid-state NMR methodologies originally developed for the study of membrane proteins in lipid bilayers for the in-situ analysis of liquid crystal display panels. In this article, we present a home-built 500 MHz narrowbore (NB) $^{19}F-^{13}C$ double resonance solid-state NMR probe with a flat-square coil and the first application of this probe for the in-situ analysis of LCD panel samples. double resonance solid-state NMR probe with a flat-square coil and the first application of this probe for the in-situ analysis of LCD panel samples.

Development of Calibration Model and Analysis of Soil Water Content using Time-Domain Refelctometry Probe in LTPP Sections (LTPP 구간에서 TDR 방식 함수량계를 이용한 현장함수비 보정모델 개발과 함수비 분석 연구)

  • Kim, Boo-Il;Jeon, Sung-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.103-112
    • /
    • 2005
  • Water content of sub-layer in pavement systems has a large effect on pavement performance. Many researchers lately make use of time-domain reflectometry(TDR) probes to measure the soil water content of sub-layer from field monitoring. The laboratory calibration test of TDR probe should be performed with soil field, because TDR probe can cause an error by type, gradation, density, and temperature of soil. This study performed the laboratory calibration test of TDR probe(CS616) with subgrade and subbase material in long term pavement performance(LTPP) sections. And the calibration equations of TDR probe(CS616) were then proposed. It was confirmed from the study that the data of TDR probe monitored in field could be used to estimate the freezing, unfrozen water content, and matric suction of soil.

  • PDF

Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography (UV 임프린트 공정을 이용한 평면 광회로 기반 형광 산소 센서 프로브 모듈 제작)

  • Ahn, Ki Do;Oh, Seung hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.37-41
    • /
    • 2018
  • This paper presents the integrated fluorescent oxygen sensor probe module based on planner lightwave circuits using UV imprint lithography. The oxygen sensor system is consisted of the optical source part, optical detector part and optical sensing probe part to be composed of the planner lightwave circuit and oxygen sensitive thin film layer. Firstly, we optimally designed the planner lightwave circuit with asymmetric $1{\times}2$ beam splitter using beam propagation method. Then, we fabricated the planner lightwave circuits using UV imprint lithography process. This planner lightwave circuits transmitted the optical power with 76% efficiency and the fluorescence signal with 70% efficiency. The oxygen sensitive thin film layer is coated on the end face of planner lightwave circuit. The oxygen sensor system using this sensor probe module with planner lightwave circuit could measure the concentration with 0.3% resolution from 0% to 20% gas range. This optical oxygen sensor probe module make it possible to compact, simple and cheap measurement system.

The study on Properties of PZT-5A Probe (PZT-5A 탐촉자의 특성 분석)

  • Kim, Cheol-Su;Kim, Sang-Su;Song, Jun-Tea;Park, Young-Kwan;Lee, Jong-Duck
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1427-1429
    • /
    • 1997
  • In this study, piezoelectric transducer were designed and manufactured using PZT-5A which have relatively high electromechanical coefficient. A epoxy is a good material as matching and backing layers. The envelope was reduced 60% as using matching layer and 76% as using matching and backing layer. NDT was successfully carried out for aluminum test pieces. Distance error and resolution of PZT-5A probe were improved as increasing frequency. Envelope was effectively reduced by backing layer but sensitiveness was poor.

  • PDF

Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage (초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발)

  • Jeon Jong-Up;Lee Chang-Soo;Choi Jae-Joon;Min Dong-Ki;Jeon Dong-Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.166-173
    • /
    • 2006
  • In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.

Characterization of Electrical Properties of Si Nanocrystals Embedded in a SiO$_{2}$ Layer by Scanning Probe Microscopy (Scanning Probe Microscopy를 이용한 국소영역에서의 실리콘 나노크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Kang, Chi-Jung;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.438-442
    • /
    • 2005
  • Si nanocrystal (Si NC) memory device has several advantages such as better retention, lower operating voltage, reduced punch-through and consequently a smaller cell area, suppressed leakage current. However, the physical and electrical reasons for this behavior are not completely understood but could be related to interface states of Si NCs. In order to find out this effect, we characterized electrical properties of Si NCs embedded in a SiO$_{2}$ layer by scanning probe microscopy (SPM). The Si NCs were generated by the laser ablation method with compressed Si powder and followed by a sharpening oxidation. In this step Si NCs are capped with a thin oxide layer with the thickness of 1$\~$2 nm for isolation and the size control. The size of 51 NCs is in the range of 10$\~$50 m and the density around 10$^{11}$/cm$^{2}$ It also affects the interface states of Si NCs, resulting in the change of electrical properties. Using a conducting tip, the charge was injected directly into each Si NC, and the image contrast change and dC/dV curve shift due to the trapped charges were monitored. The results were compared with C-V characteristics of the conventional MOS capacitor structure.

Fabrication of Conductive ZnO Thin Filn Using UV-Enhanced Atomic Layer Deposition

  • Yang, Da-Som;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.373-373
    • /
    • 2012
  • We fabricated conductive zinc oxide (ZnO) thin film at low temperature by UV-enhanced atomic layer deposition. The atomic layer deposition relies on alternate pulsing of the precursor gases onto the substrate surface and subsequent chemisorption of the precursors. In this experiment, diethylzinc (DEZ) and $H_2O$ were used as precursors with UV light. The UV light was very effective to improve the conductivity of the ZnO thin film. The thickness, transparency and resistivity were investigated by ellisometry, UV-visible spectroscopy and Four-point probe.

  • PDF

Silicon Nitride Cantilever Array Integrated with Si Heaters and Piezoelectric Sensors for Probe-based Data Storage

  • Nam Hyo-Jin;Kim Young-Sik;Lee Caroline Sunyong;Jin Won-Hyeog;Jang Seong-Soo;Cho Il-Joo;Bu Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • In this paper, a new silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been firstly developed to improve the uniformity of the initial bending and the mechanical stability of the cantilever array for thermo-piezoelectric SPM(scanning probe microscopy) -based data storages. This nitride cantilever shows thickness uniformity less than $2\%$. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. For high speed operation, 128${\times}$128 probe array was developed.

  • PDF

Determination of the Position of the Airspeed Probe Using CFD (전산유동해석에 의한 비행선 풍속계 설치 위치 선정)

  • Ok Honam;Chang Byeong-Hee;Lee Yung-Gyo;Oh Soo-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.164-170
    • /
    • 2002
  • Numerical analysis of the flowfield around a 50-meter class airship is performed to determine the optimal position for the airspeed probe installation. The turbulent flow around the hull with gondola is analyzed to examine the characteristics of the data measured by the probe attached to the gondola, and they turned out to show the nonlinear relation between the freestream and measured angles of attack and be influenced by the Reynolds number. New position of the hull nose was proposed and the effect of various factors on the flowfield around the nose was also examined. The analysis with a panel method showed that the effect of empennage was negligible, and the effect of gondola and boundary layer thickness had also little impact. It was shown that the freestream angle of attack would be the only independent variable for the probe position around the hull nose in constructing the calibration matrix.

  • PDF