• Title/Summary/Keyword: Layer-by-Layer film

Search Result 3,478, Processing Time 0.031 seconds

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

Developments of Transparent ac-PDPs

  • Choi, Hak-Nyun;Lee, Seog-Young;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1621-1624
    • /
    • 2008
  • Transparent ac-PDP test panel was prepared via a combination of materials including ITO sustaining electrodes, thin film dielectric layer and nano-sized phosphor powders. The thin film dielectric layer was prepared by E-beam evaporation process and phosphor layer was deposited on metal mesh pattern by electrophoretic deposition process. The optical transmittance and luminance of the panel indicated that full color transparent ac-PDP is feasible with the approach.

  • PDF

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • Yun, Gwan-Hyeok;Jo, Bo-Ram;Bang, Ji-Hong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF

ARAS coating with a conducting polymer (전도성 고분자를 이용한 ARAS 코팅)

  • 김태영;이보현;김종은;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1039-1042
    • /
    • 2001
  • A method for designing antireflection (AR) and antistatic (AS) films by the use of conducting polymer as an electrically conductive transparent layer is proposed. The conducting AR film is composed of four-layer with alternating high and low refractive index layer: silicon dioxide (n=1.44) and titanium dioxide (n=2.02) prepared at low temperature by sol-gel method are used as the low and high refractive index layer, respectively. The 3,4-polyethylenedioxythiophene (PEDOT) which has the sheet resistance of 10$^4$$\Omega$/$\square$ is used as a conductive layer. Optical constant of ARAS film was measured by the spectroscopic ellipsometer and from the measured optical constants the spectral properties such as reflectance and transmittance were simulated in the visible region. The reflectance of ARAS films on glass substrate was below 0.8 %R and the transmittance was higher than 95 % in the visible wavelength (400-700 nm). The measured AR spectral properties was very similar to its simulated results.

  • PDF

Application of Pulsed Chemical Vapor Deposited Tungsten Thin Film as a Nucleation Layer for Ultrahigh Aspect Ratio Tungsten-Plug Fill Process

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.486-492
    • /
    • 2016
  • Tungsten (W) thin film was deposited at $400^{\circ}C$ using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of $WF_6$ with $SiH_4$. (2) Inert gas purge. (3) $SiH_4$ exposure without $WF_6$ supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of $WF_6$ and $SiH_4$. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (${\sim}100{\mu}{\Omega}-cm$) than that of the latter (${\sim}25{\mu}{\Omega}-cm$). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.

Effect of ZnO Buffer Layers on the Crystallization of ITO Thin Film at Low Temperature

  • Seong, Chung-Heon;Shin, Yong-Jun;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.208-211
    • /
    • 2012
  • In the present study, a ZnO thin film, as a buffer layer of ITO (indium tin oxide) film was deposited on glass substrates by RF magnetron sputtering at low temperature of $150^{\circ}C$. In order to estimate the optical characteristics and compare with the experimental results in Glass/ZnO(100 nm)/ITO(35 nm) multilayered film, the simulation program, EMP (Essential Macleod Program) was adopted. The sheet resistance and optical transmittance of the films were measured using the four-point probe method and spectrophotometer, respectively. From X-ray diffraction patterns, all the films deposited at $150^{\circ}C$ demonstrated only the amorphous phase. Optical transmittance was the highest at a ZnO thickness of 100 nm. The ITO(35 nm)/ZnO(100 nm) film exhibits an optical transmittance of >92% at 550 nm. The multilayered film showed an electrical sheet resistance of 407 ${\Omega}/sq.$, which is significantly better than that of a single-layer ITO film without a ZnO buffer layer (815 ${\Omega}/sq.$).

Formulation and Pharmaceutical Properties of Mucoadhesive Film Containing Dipotassium Glycyrrhizate (구내염증 치료용 구강점막 필름제의 제제설계와 약제학적 성질)

  • Rhee, Gye-Ju;Lee, Duk-Keun;Sin, Kwang-Hyun;Park, Chong-Bum
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.2
    • /
    • pp.127-136
    • /
    • 1999
  • In order to eliminate demerits of conventional dosage forms, dipotassium glycyrrhizate was formulated as a slim mucoadhesive film type dosage form. The mucoadhesive drug layer gel containing dipotassium glycyrrhizate was prepared using $Noveon^{\circledR}$ AA-1, hydroxypropylcellulose-M, ethylcellulose N 100 and citric acid, and the protective layer gel by using ethylcellulose N 100, $Eudragit^{\circledR}$ RS and castor oil. The viscosity of drug layer gel of mucoadhesive film was enhanced as the increased amount of $Noveon^{\circledR}$ AA-1 or hydroxypropyl cellulose-M. The drug content was unifonnly $1160{\pm}14.6\;{\mu}g$, and was varied within 3.5%. The optimum film dosage form showed a good fluidity and malleability of drug layer, with 179 g of thickness, pH 5.7, 411 min of in vitro adhesion time and 172 g in gravity adhesive strength. The release time of drug from the mucoadhesive film was significantly shorter but was delayed when polymers such as ethylcellulose was added. From these results, the new mucoadhesive film may be effective for the treatment of aphthous stomatitis.

  • PDF

Characteristics of BSCCO Thin Film by Layer-by-layer Deposition (순차 스퍼터 법에 의한 BSCCO 박막의 특성)

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Gwi-Yeol;Oh, Geum-Gon;Choi, Woon-Shik;Cho, Choon-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.281-283
    • /
    • 2001
  • $Bi_{2}Sr_{2}CuO_{x}$(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion bearn sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition. two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit. then three dimensional growth takes place. Since Cu element is the most difficult to oxidize. only Sr and Bi react with each other predominantly. and forms a buffer layer on the substrate in an amorphous-like structure. which is changed to $SrBi_{2}O_{4}$ by in-situ anneal.

  • PDF

The improved transmittance of an IR window by coating a DLC film (DLC 박막 코팅에 의한 IR window의 적외선 투과율 향상에 관한 연구)

  • Uhm, Hyun-Seok;Park, Jin-Seok;Park, Sung-Lae;Kim, Kyu-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1340-1342
    • /
    • 1998
  • The diamond-like carbon(DLC) film, as an antireflection layer, is coated on a commerically used Ge window. DLC films are deposited by using an rf(13.56 MHz) plasma CVD. The optimal value of thickness and refractive index of DLC layer has been determined from the computer simulation. IR-transmittances of DLC-coated Ge windows are estimated by measuring FTIR spectra in the wavelength range of$ 2.5{\sim}25{\mu}m$. By coating the DLC film on one side of the Ge window, the transmittance measured at a wavelength of $10{\mu}m$ is about 60 %, while that of the bare Ge is lower than 50 %. Also, a higher transmittance up to about 90 % is obtained by coating the DLC film on both sides of the window. It may be suggested that the further improvement of the IR-transmittance can be achieved by more precisely controlling the thickness and the refractive index of DLC layer and also by adopting various muliti-layer antireflection structures.

  • PDF

Ultra Thin Film Barrier Layer for Plastic OLED

  • Kopark, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.44-47
    • /
    • 2004
  • Fabrication of barrier layer on PES substrate and plastic OLED device by atomic layer deposition are carried out. Simultaneous deposition of 30nm of $AlO_x$ film on both sides of PES gives film MOCON value of 0.0615g/$m^2$.day (@38$^{\circ}C$, 100% R.H). Introduction of conformal $AlO_x$ film by ALD resulted in enhanced barrier properties for inorganic double layered film including PECVO $SiN_x$. Preliminary life time to 91% of initial luminance (1300 cd/$m^2$ ) for 100nm of PECVD $SiN_x$/30nm of ALD $AlO_x$ coated plastic OLED device was 260 hours.

  • PDF