• Title/Summary/Keyword: Layer-by-Layer assembly

Search Result 237, Processing Time 0.031 seconds

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells

  • Choe, Seunghoe;Lee, Byung-Seok;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.

A Self-standing and Binder-free Electrodes Fabricated from Carbon Nanotubes and an Electrodeposited Current Collector Applied in Lithium-ion Batteries

  • Luais, Erwann;Mery, Adrien;Abou-Rjeily, John;Sakai, Joe;Tran-Van, Francois;Ghamouss, Fouad
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.373-380
    • /
    • 2019
  • In this paper, we report the preparation of a flexible, self-standing and binder-free carbon nanotubes (CNTs) electrode with an electro-generated current collector. The copper current collector layer was electrodeposited on the backside of CNTs self-standing film obtained by a simple filtration process. The obtained CNTs-Cu assembly was used as a negative electrode in Li-ion batteries exhibiting good performance along with proving its applicability in flexible batteries.

A Study on the Multistage Screening Procedure when Inspection Errors are Present (검사 오류를 고려한 다단계 선별절차에 관한 연구)

  • Kwon, Hyuck-Moo;Kim, Young-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.4
    • /
    • pp.88-95
    • /
    • 2005
  • Multistage screening is a common practice when a component has a critical effect on the function of the assembly. A defect in a component might incur malfunction of an electronic device, resulting in a great amount of loss. Multistage screening, including duplicated screening inspections, may provide a good solution for this problem when inspection errors are present. In the company studied here, the manufacturing process of the multiple layer chip capacitor includes two-stage screening. In the first stage, screening inspection is performed repeatedly until no defects are found in the lot. In the second stage, sampling inspection is performed by a group of experts prior to shipment. In this article, we review the procedure used in the field and suggest a revised model of the multiple screening procedure and solution method for this situation. The usefulness of the proposed model is discussed through a practical example.

Laser Welding Application in Car Body Manufacturing

  • Shin, H.O.;Chang, I.S.;Jung, C.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.2-7
    • /
    • 2003
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows; optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4㎾ Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. This application was successfully launched mass production line in 2001. The laser-welded line of side panel consists of 122 stitches totally. And the length is about 2.4m.

  • PDF

Recent Trends in the Development of Organic Thin Film Transistor Including SAM Dielectric (SAM 절연체를 이용한 유기박막트랜지스터 개발의 최근 동향)

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • A newly developed OTFT manufacturing process using the combination of self-assembly techniques and vapor phase polymerization method revealed that a thick $SiO_2$ dielectric layer (100~200 nm) is not well compatible with conducting polymer electrode, thereby resulting in still recognizable contact resistance, unstable $V_{th}$ and leaking off current. A couple of very recent studies showed that this issue may be solved by replacing such inorganic dielectric with a self-assembled monolayer or multilayer (organic) dielectric. Therefore, this short review introduces recent trends in the development of high performance thin film transistor consisting of both organic semiconductor and SAM dielectric.

  • PDF

High Optical Performance of 7" Mini-monitor Based on 2D-3D Convertible Autostereoscopic Display

  • Kim, Sun-Kyung;Park, Sang-Hyun;Kim, You-Jin;Min, Kwan-Sik;Park, Seo-Kyu;Jhun, Chul-Gyu;Kwon, Soon-Bum
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1367-1370
    • /
    • 2009
  • We have developed a 2D-3D convertible 7" autostereoscopic mini-monitor with high 3D quality, in which the parallax barrier LCD is attached on the TFTLCD. The excellent optical performance was achieved by design of the ghost free barrier and precise assembly between the barrier layer and the TFT-LCD panel. Our design principle and fabrication technology suppressed 3D cross-talk and improved viewing angle. In this paper, the design and fabrication process of the 3D mini-monitor are described. The evaluation for the 3D performance is also discussed.

  • PDF

Controlled Assembly of Gold Nanoprism and Hexagonal Nanoplate Films for Surface Enhanced Raman Scattering

  • Lee, Doo-Ri;Hong, Soon-Chang;Park, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3575-3580
    • /
    • 2011
  • This paper reports a methodology for preparing close-packed two dimensional gold nanoprism films and hexagonal nanoplate films at a hexane/water interface. By controlling the concentration of linker molecules in the hexane layer and the temperature of the colloid solution, highly ordered close-packed nanoplate arrays can be fabricated. These films were investigated to compare their corresponding surface enhanced Raman scattering (SERS) efficiencies. It was demonstrated that the Au nanoprism films resulted in a stronger SERS enhancement than the Au hexagonal nanoplate films. The difference in the SERS enhancement is attributed to the film array difference, demonstrating that Au nanoprism films have a higher line contact density than their Au hexagonal analogues.

Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model (복합재료 연료전지 스택의 열응력 해석)

  • Jeon Ji Hoon;Hwang Woonbong;Um Sukkee;Kim Soowhan;Lim Tae Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

Characterization of biotin-avidin recognition system constructed on the solid substrate

  • Lim, Jung-Hyurk
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.460-468
    • /
    • 2005
  • The biotin-avidin complex, as a model recognition system, has been constructed through N-hydroxysuccinimide(NHS) reaction on a variety of substrates such as a smooth Au film, electrochemically roughened Au electrode and chemically modified mica. Stepwise self-assembled monolayers (SAMs) of biotin-avidin system were characterized by surface-enhanced resonance Raman scattering (SERRS) spectroscopy, atomic force microscopy (AFM) and surface plasmon resonance (SPR). A strong SERRS signal of rhodamine tags labeled in avidin from the SAMs on a roughened gold electrode indicated the successful complex formation of stepwise biotin-avidin recognition system. AFM images showed the circular shaped avidin aggregates (hexamer) with ca. $60{\AA}$ thick on the substrate, corresponding to one layer of avidin. The surface coverage and concentration of avidin molecules were estimated to be 90% and $7.5{\times}10^{-12}mol/cm^2$, respectively. SPR technique allowed one to monitor the surface reaction of the specific recognition with high sensitivity and precision.

Electrical Characteristics of Self-Assembled Organic Thin Films Using Ultra-High Vacuum Scanning Tunneling Microscopy (UHV STM을 이용한 유기 초박막의 전기적 특성 연구)

  • Kim, Seung-Un;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.108-111
    • /
    • 2003
  • Currently, molecular devices are reported utilizing active self-assembled monolayers containing the nitro group as the active component, which has active redox centers[1]. We confirm the electrical properties of 4,4-di(ethynylphenyl)-2'-nitro-1-benzenethiolate. To deposit the SAM layer onto gold electrode, we transfer the prefabricated Au(111) substrates into a 1mM self-assembly molecules in THF solution. Au(111) substrates were prepared by ion beam sputtering method of gold onto the silicon wafer. As a result, we measured current-voltage curve using ultra high vacuum scanning tunneling microscopy (UHV STM), I-V curve also clearly shows several current peaks between the negative bias region (-0.3958V) and the positive bias region (0.4658V), respectively.

  • PDF