• Title/Summary/Keyword: Layer-By-Layer Training

Search Result 305, Processing Time 0.023 seconds

Prediction of Influent Flow Rate and Influent Components using Artificial Neural Network (ANN) (인공 신경망(ANN)에 의한 하수처리장의 유입 유량 및 유입 성분 농도의 예측)

  • Moon, Taesup;Choi, Jaehoon;Kim, Sunghui;Cha, Jaehwan;Yoom, Hoonsik;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.

A Design And Implementation Of Simple Neural Networks System In Turbo Pascal (단순신경회로망의 설계 및 구현)

  • 우원택
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.1.2-24
    • /
    • 2000
  • The field of neural networks has been a recent surge in activity as a result of progress in developments of efficient training algorithms. For this reason, and coupled with the widespread availability of powerful personal computer hardware for running simulations of networks, there is increasing focus on the potential benefits this field can offer. The neural network may be viewed as an advanced pattern recognition technique and can be applied in many areas such as financial time series forecasting, medical diagnostic expert system and etc.. The intention of this study is to build and implement one simple artificial neural networks hereinafter called ANN. For this purpose, some literature survey was undertaken to understand the structures and algorithms of ANN theoretically. Based on the review of theories about ANN, the system adopted 3-layer back propagation algorithms as its learning algorithm to simulate one case of medical diagnostic model. The adopted ANN algorithm was performed in PC by using turbo PASCAL and many input parameters such as the numbers of layers, the numbers of nodes, the number of cycles for learning, learning rate and momentum term. The system output more or less successful results which nearly agree with goals we assumed. However, the system has some limitations such as the simplicity of the programming structure and the range of parameters it can dealing with. But, this study is useful for understanding general algorithms and applications of ANN system and can be expanded for further refinement for more complex ANN algorithms.

  • PDF

Numerical Analysis of Cold Storage System with Array of Solid-Liquid Phase Change Module (저온의 고-액상변화 모듈 용기의 배열에 따른 축냉시스템의 수치해석)

  • Mun, Soo-Beom
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.577-582
    • /
    • 2015
  • This paper is the fundamental study for the application of cold storage system to the transportation equipment by sea and land. This numerical study presents the solid-liquid phase change phenomenon of calcium chloride solution of 30wt %. The governing equations are 1-dimensional unsteady state heat transfer equations of $1^{st}$ order partial differential equations. This type of latent heat storage material is often usable in fishery vessel for controlling the temperature of container with constant condition. The governing equation was discretized with finite difference method and the program was composed with Mathcad program. The main parameters of this solution were the initial temperature of heat storage material, ambient temperature of cold air and the velocity of cold air. The data of boundary layer thickness becomes thin with the increasing of cold air flowing velocity and also the heat storage completion time become shorten.

Prediction of Multi-Physical Analysis Using Machine Learning (기계학습을 이용한 다중물리해석 결과 예측)

  • Lee, Keun-Myoung;Kim, Kee-Young;Oh, Ung;Yoo, Sung-kyu;Song, Byeong-Suk
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.94-102
    • /
    • 2016
  • This paper proposes a new prediction method to reduce times and labor of repetitive multi-physics simulation. To achieve exact results from the whole simulation processes, complex modeling and huge amounts of time are required. Current multi-physics analysis focuses on the simulation method itself and the simulation environment to reduce times and labor. However this paper proposes an alternative way to reduce simulation times and labor by exploiting machine learning algorithm trained with data set from simulation results. Through comparing each machine learning algorithm, Gaussian Process Regression showed the best performance with under 100 training data and how similar results can be achieved through machine-learning without a complex simulation process. Given trained machine learning algorithm, it's possible to predict the result after changing some features of the simulation model just in a few second. This new method will be helpful to effectively reduce simulation times and labor because it can predict the results before more simulation.

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

Shadow Removal based on the Deep Neural Network Using Self Attention Distillation (자기 주의 증류를 이용한 심층 신경망 기반의 그림자 제거)

  • Kim, Jinhee;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • Shadow removal plays a key role for the pre-processing of image processing techniques such as object tracking and detection. With the advances of image recognition based on deep convolution neural networks, researches for shadow removal have been actively conducted. In this paper, we propose a novel method for shadow removal, which utilizes self attention distillation to extract semantic features. The proposed method gradually refines results of shadow detection, which are extracted from each layer of the proposed network, via top-down distillation. Specifically, the training procedure can be efficiently performed by learning the contextual information for shadow removal without shadow masks. Experimental results on various datasets show the effectiveness of the proposed method for shadow removal under real world environments.

Research on the Efficiency of Classification of Traffic Signs Using Transfer Learning (전수 학습을 이용한 도로교통표지 데이터 분류 효율성 향상 연구)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.119-127
    • /
    • 2019
  • In this study, we investigated the application of deep learning to the manufacturing process of traffic and road signs which are constituting the road layer in map production with 1 / 1,000 digital topographic map. Automated classification of road traffic sign images was carried out through construction of training data for images acquired by using transfer learning which is used in image classification of deep learning. As a result of the analysis, the signs of attention, regulation, direction and assistance were irregular due to various factors such as the quality of the photographed images and sign shape, but in the case of the guide sign, the accuracy was higher than 97%. In the digital mapping, it is expected that the automatic image classification method using transfer learning will increase the utilization in data acquisition and classification of various layers including traffic safety signs.

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.