• 제목/요약/키워드: Layer coefficient

검색결과 1,444건 처리시간 0.031초

마이크로 발전기의 열전박막 설계 (Design of Thermoelectric Films for Micro Generators)

  • 김현세;이양래;이공훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1455-1458
    • /
    • 2007
  • In this research, a polycrystalline silicon (poly-Si) film layer for micro thermoelectric generator (TEG) was fabricated. The fabrication process of the thermoelectric poly-Si film layer is explained. The P-type and N-type poly-Si films were fabricated on a tetra ethoxy silane (TEOS) layer with a supporting Si wafer. Seebeck coefficient and electrical conductivity were measured, including the transport properties such as the hall coefficient, hall mobility and carrier concentration. The design parameters for a rapid thermal process (RTP) were decided based on the experimental results. The measured power factors of the P-type and N-type were $21.2\;{\mu}Wm^{-1}K^{-2}$ and $26.7\;{\mu}Wm^{-1}K^{-2}$, respectively.

  • PDF

複合因 擾亂 水槽를 이용한 대류 경계층에서의 연직방향 plume 확산에 관한 실험적 연구 (An Experimental Study on the Vertical Dispersion of Plume in Convective Boundary Layer Using a Composite Turbulence Water Tank)

  • 박옥현;서석진;이상훈
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.639-647
    • /
    • 1999
  • Experimental methods of plume dispersion in convective boundary layer using a composite turbulence water tank have been established through (ⅰ) manufacturing of water tank system, (ⅱ) providing of tracer whose volatility is relatively low, (ⅲ) development of software for image processing of dispersed particles in fluid, and (ⅳ) application of appropriate similarity law. Using these methods, the vertical dispersion coefficient $$\sigma$_2$ at long distances on mesoscale and the centerline height $Z_c$ of plumes have been measured. Measurement of $$\sigma$_2$ have been validated through comparison with CONDORS field experiments, and analysed with respect to the intensity of heat flux and mechanical turbulence as well as plume release height. Downwind distance where plume center height approaches to final level has also been analysed in respect of these three parameters.

  • PDF

마이크로 임계노즐 유동의 CFD 예측 (A CFD Prediction of a Micro Critical Nozzle Flow)

  • 김재형;우선훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.652-657
    • /
    • 2001
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $k-\varepsilon$ turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

  • PDF

전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측 (Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method)

  • 이동훈;허성춘;권영필
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.

Smagorinsky method와 2-level method를 이용한 난류 확산계수의 비교 연구 (Comparison study of turbulent diffusion coefficient using Smagorinsky method and 2-level method)

  • 이화운;오은주;정우식;최현정;임주연
    • 한국환경과학회지
    • /
    • 제11권7호
    • /
    • pp.679-686
    • /
    • 2002
  • Turbulence greatly influence on atmospheric flow field. In the atmosphere, turbulence is represented as turbulent diffusion coefficients. To estimate turbulent diffusion coefficients in previous studies, it has been used constants or 2-level method which divides surface layer and Ekman layer. In this study, it was introduced Smagorinsky method which estimates turbulent diffusion coefficient not to divide the layer but to continue in vertical direction. We simulated 3-D flow model and TKE equation applied turbulent diffusion coefficients using two methods, respectively. Then we showed the values of TKE and the condition of each term to TKE. The results of Smagorinsky method were reasonable. But the results of 2-level method were not reasonable. Therefor, it had better use Smagorinsky method to estimate turbulent diffusion coefficients. We are expected that if it is developed better TKE equation and model with study of computational method in several turbulent diffusion coefficients for reasonably turbulent diffusion, we will able to predict precise wind field and movements of air pollutants.

적외선 흡수층 응용을 위한 다층 산화 바나듐 박막의 특성에 관한 연구 (A Study for the Characteristics of multi-layer VOx Thin Films for Applying to IR Absorbing Layer)

  • 박철우;문성욱;오명환;정홍배
    • 한국전기전자재료학회논문지
    • /
    • 제13권10호
    • /
    • pp.859-864
    • /
    • 2000
  • Recently IR detecting devices using MEMS have been actively studied. Microbolometer, one of these devices, detects the change of resistivity as the change of temperature of the device by absorbing IR, IR absorbing materials for microbolometer should have high TCR value and low noise characteristics which depends on resistivity. We fabricated multi-layer VOx thin films to improve the IR detectivity of uncooled IR devices and analyzed IR absorbing characteristics. We fabricated multi-layer VOx thin films by RF reactive sputtering method on SiNx substrate and changed characteristics using the different thickness of V and V$_2$O$\_$5/ thin films. Then we annealed them under 300$\^{C}$. The TCR (Temperature Coefficient of Resistance) measurement was carried out to estimate the IR detectivity of multi-layer VOx thin films. XRD (X-Ray Diffraction) analysis was carried out to estimate the IR detectivity of multi-layer VOx thin films. ZXRD (X-Ray Diffraction) analysis was used to find out phases and structures of V and V$_2$O$\_$5/ thin films. AES (Auger Electron Spectroscopy) analysis was used to find out composition of multi-layer VOx thin films before and after annealing. We obtained the optimum thickness range of V and V$_2$O$\_$5/ thin films from the result of AES analysis. We changed the thickness of V$_2$O$\_$5/ about 20 to 150 $\AA$ and thickness of V about 10 to 20 $\AA$. As the result of this, TCR value of multi-layer VOx thin films was about -2%/k and the resistivity was ∼1Ωcm.

  • PDF

단순회귀분석에 의한 토층지반의 투수계수 산정모델 (Estimation model of coefficient of permeability of soil layer using linear regression analysis)

  • 이문세;김경수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.1043-1052
    • /
    • 2009
  • To derive easily the coefficient of permeability from several other soil properties, the estimation model of coefficient of permeability was proposed using linear regression analysis. The coefficient of permeability is one of the major factors to evaluate the soil characteristics. The study area is located in Kangwon-do Pyeongchang-gun Jinbu-Myeon. Soil samples of 45 spots were taken from the study area and various soil tests were carried out in laboratory. After selecting the soil factor influenced by the coefficient of permeability through the correlation analysis, the estimation model of coefficient of permeability was developed using the linear regression analysis between the selected soil factor and the coefficient of permeability from permeability test. Also, the estimation model of coefficient of permeability was compared with the results from permeability test and empirical equation, and the suitability of proposed model was proved. As the result of correlation analysis between various soil factors and the coefficient of permeability using SPSS(statistical package for the social sciences), the largest influence factor of coefficient of permeability were the effective grain size, porosity and dry unit weight. The coefficient of permeability calculated from the proposed model was similar to that resulted from permeability test. Therefore, the proposed model can be used in case of estimating the coefficient of permeability at the same soil condition like study area.

  • PDF

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

하이브리드 코팅시스템에 의해 제조된 Ti-Si-N 코팅막의 상대재에 대한 마모거동 연구 (Tribological Behaviors Against Counterpart Materials of Ti-Si-N Coating Layers Prepared by a Hybrid Coating System)

  • 박옥남;박종현;윤석영;권식철;김광호
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.116-121
    • /
    • 2003
  • Ti-Si-N coating layers were deposited onto WC-Co substrates by a hybrid system of arc ion plating (AIP) and sputtering techniques. The tribological behaviors of Ti-Si-N coating layers with various Si contents were investigated by the dry sliding wear experiments, which were conducted at three different sliding speeds, 0.1, 0.3, 0.5 m/s, against the steel and alumina balls. In the case of steel ball, the average friction coefficient slightly decreased with increasing the sliding speed regardless of Si content due to adhesive wear behavior between coating layer and steel ball. At constant sliding speed, the average friction coefficient decreased with increase of Si content. On the contrary, in the case of alumina ball, the average friction coefficient increased with increasing the sliding speed regardless of Si content, indicating that the abrasive wear behavior was more dominant when the coating layers slide against alumina ball. Through these experimental results, it was found that the tribological behaviors of Ti-Si-N coating layers were effected by factors such as Si content, sliding speed, and kinds of counterpart materials rather than the hardness of coating layer.

A Study of Shielding Properties of X-ray and Gamma in Barium Compounds

  • Seenappa, L.;Manjunatha, H.C.;Chandrika, B.M.;Chikka, Hanumantharayappa
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.26-32
    • /
    • 2017
  • Background: Ionizing radiation is known to be harmful to human health. The shielding of ionizing radiation depends on the attenuation which can be achieved by three main rules, i.e. time, distance and absorbing material. Materials and Methods: The mass attenuation coefficient, linear attenuation coefficient, Half Value Layer (HVL) and Tenth Value Layer (TVL) of X-rays (32 keV, 74 keV) and gamma rays (662 keV) are measured in Barium compounds. Results and Discussion: The measured values agree well with the theory. The effective atomic numbers ($Z_{eff}$) and electron density (Ne) of Barium compounds have been computed in the wide energy region 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. Conclusion: The mass attenuation coefficient and linear attenuation coefficient for $BaCO_3$ is higher than the $BaCl_2$, $Ba(No_3)_2$ and BaSO4. HVL, TVL and mean free path are lower for $BaCO_3$ than the $BaCl_2$, $Ba(No_3)_2$ and $BaSO_4$. Among the studied barium compounds, $BaCO_3$ is best material for x-ray and gamma shielding.