• Title/Summary/Keyword: Layer coefficient

Search Result 1,452, Processing Time 0.032 seconds

Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness (강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향)

  • Lee, JunHyuk;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress (Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향)

  • Park, Jun-Baek;Seo, Dae-Shik;Lee, Sang-Keuk;Lee, Joon-Ung;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

Micro Structure and the Coefficient of Friction with $H_2S$ and $C_3H_8$ Gas Addition During Plasma Sulf-nitriding of SM45C Carbon Steel (SM45C 탄소강의 플라즈마 침류질화 처리 시 $H_2S$, $C_3H_8$ 가스 첨가에 따른 미세조직 및 마찰계수의 변화)

  • Ko, Y.K.;Moon, K.I.;Lee, W.B.;Kim, S.W.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.237-242
    • /
    • 2007
  • Friction coefficient of SM45C steel was surprisingly reduced with $H_2S$ and $C_3H_8$ gas during plasma sulf-nitriding. During the plasma sulf-nitriding, 100-700 sccm of $H_2S$ gas and 100 sccm of $C_3H_8$ gas were added and working pressure and temperature were 2 torr, $500-550^{\circ}C$, respectively. As $H_2S$ gas amount increased over 500 sccm, flake-like structures were developed on top of the nitriding layer and grain size of the nitriding layer were about 100 nm. The friction coefficient for the sample treated plasma sulf-nitriding under $N_2-H_2S$ gas was 0.4 - 0.5. The structure became more finer and amorphous-like along with $N_2-H_2S-C_3H_8$ gas and the nano-sized surface microstructures resulted in high hardness and significantly low friction coefficient of 0.2.

Determination of the Equivalent Energy of a 6 MV X-ray Beam (6 MV X-선 빔의 등가에너지 결정)

  • Kim, Jong-Eon;Park, Byung-Do
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.591-596
    • /
    • 2016
  • The purpose of this study is to determine the equivalent energy of a 6MV X-ray beam in the experiment. The half-value layer (HVL) of lead for the 6 MV X-ray beam was measured using an ionization chamber. The linear attenuation coefficients were calculated with HVL. And, the mass attenuation coefficient was obtained by dividing the linear attenuation coefficient by the density of lead. The equivalent energy of mass attenuation coefficient was determined using the photon energy versus mass attenuation coefficient data of lead given by National Institute of Standards and Technology (NIST). In conclusion, the equivalent energy of the 6 MV X-ray beam was determined to be 1.61 MeV. This equivalent energy was determined to be about 30% lower than reported by Reft. The reason is presumed to be due to the presence of an air cavity between the lead attenuators.

Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material (플라스틱온실 피복재의 관류열전달계수 변화)

  • Lee, Hyun-Woo;Diop, Souleymane;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • The objective of the present study is to provide the basic data necessary for estimating the overall heat transfer coefficient of commercial plastic greenhouse. The heat flow through covering of greenhouses was measured and the variation of overall heat transfer coefficient was analyzed. Because the inside-outside temperature difference of greenhouse to indicate the stabilized overall heat transfer coefficient was different depending on the number of covering layers, the actual overall heat transfer coefficient should be decided in range of inside-outside temperature difference to make the coefficient constant for each covering method. The variation trend of the overall heat transfer coefficient according to the inside-outside temperature difference corresponded with the existing research results, but the specific values of temperature difference to present the stabilized overall heat transfer coefficient were different each other. The increase rates of overall heat transfer coefficient with wind speed were quite dissimilar among several research results and the quantity of heat loss through covering according to the wind speed in the double layers covered or curtained greenhouse was less than that in the single layer covered greenhouse. Because there was large variations among the values of overall heat transfer coefficient for the polyethylene film greenhouses, it was required to establish the standardized environmental condition for experiment measuring heat flow through covering in commercial greenhouse.

Optical Properties of Sea Water - Entrance of Tokyo Bay , Japan ( 2 ) - (해수의 광학적 성질에 관한 연구 - 일본 동경만 입구 ( 2 ) -)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.16-21
    • /
    • 1986
  • Optical properties of sea water were studied in the entrance of Tokyo Bay, Japan. based on the data obtained from seven oceanographic stations in June. 1985. The observation of surface irradiance and underwater irradiance of sea water for eight kind of wavelength (378, 422, 481, 513, 570, 621, 653. 677nm) of sun light was conducted using the underwater irradiameter (Isigawa # SR-8). The mean att;enuation coefficient of the sea water was appeared to be 0.245 (0.042-0.776) and the attenuation co~fficient of the sea water for wavelength appeared such as 0.227 for 378 nm, 0.186 for 422 nm. O. 175 for 481 nm. O. 176 for 513 nm. O. 185 for 570 nm, 0.337 for 621 nm. O. 321 for 653 nm, O. 348 for 677 nm. The transparency was 7.0 m (5.5-9 m). water color was 10 (8.0-13.0) in the study area and the sun altitude was 60.95$^{\circ}$ (43.610-75.500). The relationship between attenuation coefficient (K) and transparency (D) was K = 2.63/ D (1.28/ D- 4. 87/D). The rate of light penetration for eight kind of wave Ie nth (378, 422. 481. 513. 570, 621, 653, 677 nm) were computed with reference to the surface light intensity respectively. The mean rate of light penetration in proportion to depths were 68.63% (46.02-86.07%) in 1 m layer, 18.40% (2.07 -48.48%) in 5m layer, 4.82% (0.042-22.30%) in 10m layer and 1.35% (0.01I-7.42%) in 20m layer. The rate of light penetration at the transparency layer with reference to the surface light intensity was shown as 10.39% (0.77-27.46%).

  • PDF

Atmospheric Boundary Layer Height Estimated based on 1.29 GHz Pulse Wave (1.29 GHz 펄스파로 산출한 대기경계층 고도)

  • Zi-Woo Seo;Byung-Hyuk Kwon;Kyung-Hun Lee;Geon-Myeong Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1049-1056
    • /
    • 2023
  • The height of the atmospheric boundary layer indicates the peak developed when turbulence is generated by mixing heat and water vapor, and is generally determined through thermodynamic methods. Wind profilers produce atmospheric information from the scattering of signals sent into the atmosphere. A method for making the spectrum of turbulent components, turbulent kinetic energy dissipation rate, and refractive index structure coefficient was presented to determine the atmospheric boundary layer depth. Compared with the vertical distribution characteristics of potential temperature and specific humidity based on radiosonde data, the determination method of the atmospheric boundary layer height from wind profiler output was evaluated as very useful.

A Computational Study for the Discharge Coefficient of a Film-Cooling Hole (Film-Cooling Hole의 유출계수에 관한 수치해석적 연구)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 2003
  • Computational study using the 2-dimensional, compressible, Navier-Stokes equations is performed to predict the discharge coefficient of air flow through a film-cooling hole. In order to investigate the effect of internal/external flows on discharge coefficient, the present computational results which are obtained for three flow cases, only external flow, only internal flow, and no flow, are compared with experimental ones. It is found that the computational results predict the discharge coefficient of the film-cooling hole in a reasonable accuracy and the external crossflow reduces the discharge coefficient, while the internal crossflow increases the discharge coefficient in a range of momentum flux ratio $I_{c-jet}$ > 1 due to the total pressure loss and boundary layer effect.

A prediction of indoor pollutant concentration using method mass transfer coefficient in multi-layered building materials (복합 건축자재의 물질전달계수를 이용한 실내 오염물질 농도 예측방법)

  • Kim, Chang Nam;Lee, Yun Gyu;Leigh, Seung Bok;Kim, Tae Yeon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 2007
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in multi-layered building materials, and predict the indoor pollutant concentration through the CFD(Computational of Fluid Dynamics) and CRIAQ2 based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient(hm') which indicates the existing convective mass transfer coefficient(hm) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.