• 제목/요약/키워드: Layer by Layer Deposition

검색결과 2,299건 처리시간 0.03초

ALD ZnO 버퍼층 증착 온도가 전착 Cu2O 박막 태양전지 소자 특성에 미치는 영향 (The Influence of Deposition Temperature of ALD n-type Buffer ZnO Layer on Device Characteristics of Electrodeposited Cu2O Thin Film Solar Cells)

  • 조재유;트란 휴 만;허재영
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.21-26
    • /
    • 2018
  • Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. $Cu_2O$, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility ($100cm^2/Vs$). In spite of these various advantages, the efficiency of $Cu_2O$ based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of $Cu_2O$ solar cells can be the formation of CuO layer due to atmospheric surface oxidation of $Cu_2O$ absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on $Cu_2O$ surface. First, $Cu_2O$ absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between $80^{\circ}C$ to $140^{\circ}C$. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on $Cu_2O$ based solar cells by J-V and XPS measurements.

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • 윤관혁;조보람;방지홍;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF

초 저속 순차증착으로 제작한 Bi계 초전도 박막의 생성막 평가 (Analysis of the Hi-system Superconducting Thin Films Fabricated by Layer-by-Layer Deposition Method at an Ultra low growth rate)

  • 양승호;김영표;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.503-504
    • /
    • 2007
  • $Bi_2Sr_2Ca_{n-1}Cu_nO_x$(n=0, 1, 2)superconducting thin films have been fabricated by atomic layer-by-layer deposition at an ultra low growth rate using IBS(Ion Beam Sputtering) method. During the deposition, 90 mol% ozone gas of typical pressure of $1{\sim}9{\times}10^{-5}$ Torr are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

베르베린 천연색소화합물과 음이온고분자전해질을 이용한 layer-by-layer self-assembly 색소다층박막 제조 (Layer-by-layer self-assembly colorant multi-layer preparation using natural colorant Berberine and anionic polyelectrolyte)

  • 손영아;박영민;이승구
    • 한국염색가공학회지
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2006
  • A multi-layer of the dye, natural colorant Berberine, was successfully developed by the self-assembly deposition from water-soluble cationic dye(Berberine chloride) and anionic polyelectrolyte PSS(Polysodium 4-styrenesulfonate) in aqueous solution via electrostatic attraction. The corresponding results on multi-layer were characterized by UV-Vis absorbance measurements. The growth of multi-layer formed by the sequential interaction was also determined. The findings measured by UV-Vis spectrophotometer showed that the bilayer deposition characteristic was linear and highly reproducible from layer to layer.

대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교 (The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer)

  • 정대영;이영준;박준용;이준신
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.

초저속 순차증착으로 제작한 Bi2212 박막의 특성 (Characteristics of Bi2212 Thin Film Fabricated by Layer-by-Layer Deposition at an Ultra Low Growth rate)

  • 이희갑;박용필;천민우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.119-121
    • /
    • 2002
  • $Bi_2Sr_2CuO_x$ thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method, 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

초전도 박막의 에피택셜 성장에 관한 연구 (A Study on the Epitaxial Growth of Superconducting Thin Film)

  • 이희갑;박용필;김귀열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.208-211
    • /
    • 2002
  • $Bi_2Sr_2CuO_x$(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2000
  • Si$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

이온 빔 스퍼터법에 의한 BSCCO 박막의 순차 증착 (Layer-by-layer Deposition of BSCCO Thin Films Using Ion Beam Sputtering Method)

  • 박용필;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.334-339
    • /
    • 1998
  • $Bi_2Sr_2CuO_x$(Bi-2201) thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering (IBS) method. During the deposition, 14 wt%-ozone/oxygen mixture gas of typical pressure of $5.0\times10^{-5}$ Torr is supplied with ultraviolent light irradiation for oxidation. XRD and RHEED investigations reveal that a buffer layer with compositions different from Bi-2201 is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2000
  • Bi$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/. Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF