• Title/Summary/Keyword: Lay-up orientation

Search Result 15, Processing Time 0.017 seconds

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

A Study on the Effect of Startup's Innovation Orientation on Growth Aspiration (창업기업의 혁신지향성이 성장열망에 미치는 영향에 관한 연구)

  • Oh, Hyemi;Lee, Chaewon;Kim, Jinsoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.5
    • /
    • pp.1-14
    • /
    • 2021
  • Innovation and Scale-up of Start-up companies are becoming important national tasks. In the past, it was spread the start-up policy paradigm such as 'Start-up America', 'Start-up Chile', 'Start-up Britain' to overcome the recession globally. However as the economic recovery has become more visible recently in advanced economies, it is shifting from a start-up support policy to a scale-up oriented policy paradigm such as 'Scale-up America', Scale-up UK', 'Scale-up Denmark'. It is necessary to enter the scale-up phase beyond the start-up phase to increase the number of high-quality jobs and to continue economic growth. Therefore, it is necessary to grow the start-up into a strong medium-sized company and to lay the foundation for survival. Therefore, the purpose of this study is to consider the antecedent factors that influence the scale-up aspiration for the start-up firm to grow into a scale-up company, and empirically identifies the differences between the stages of economic development and entrepreneurs in the country. In order to accomplish the purpose, this study predicted scale-up by aspiration which is a predictor of scale-up behavior because it is difficult to achieve visible growth in a short period of time due to the characteristics of start-up companies. In order to empirically explore these relationships, the data were collected from nascent entrepreneurs who have less than 3.5 years of the Adult Population Survey(APS) among the subjects surveyed by the Global Entrepreneurship Monitor(GEM) and the national economic development stage are divided into Innovation-driven, Efficiency-driven, Factor-driven type economies. For the test hypotheses, this study adopted the multi-level model analysis for comparison between national economic development stages and using the R 3.5.0 program. The results of this study are as follows. There is difference between the national economic development and the entrepreneur in the relationship between innovation orientation of entrepreneurs and scale-up aspirations. As the economy of the country develops, the innovation activity of the entrepreneur becomes more active. Since start-ups are heavily influenced by entrepreneurs, there is a difference in the degree of aspiration depending on how innovative an entrepreneur is in the same environment. In terms of the relationship between innovation orientation and scale-up aspiration, the fear of failure was found to differ between national economic development and entrepreneurs. The fear of failure differ from country to country, and this is one of the important factors affecting entrepreneurial activities. It is expected that the factors influencing the growth of the start-up companies which are identified through the results of these studies, will be used to create a suitable scale-up ecosystem according to the national economic development stage.

Design of Composite Laminate Bicycle Wheel considering Stacking Sequence (적층각을 고려한 복합재료 라미네이트 자전거 휠의 설계)

  • Lee, Jin-Ah;Hong, Hyoung-Taek;Kang, Kyoung-Tak;Chun, Heoung-Jae
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.141-146
    • /
    • 2012
  • The strength design for the lightweight bicycle wheel made of the Carbon/Epoxy composite laminates has been discussed in this paper. For bicycle wheel design, lightness of the wheel is important. Also, it has to satisfy the required strength under specific loading cases. Two testing methods for the bicycle wheel, i.e. vertical and complex loadings, are adopted in this study. Because the strengths of composite wheel is different in relation to the stacking sequence and the number of plies, it is important to decide an appropriate stacking sequence and number of layers for the composite wheel. From the finite element analysis results, the most stable sequence orientation and number of layers are determined. The stacking sequence $[0]_{8n}$, $[90]_{8n}$, $[0/90]_{2ns}$, $[{\pm}45]_{2ns}$, $[0/{\pm}45/90]_{ns}$ (n=1,2,3,4)are performed for finite element analysis. From results, $[0/{\pm}45/90]_{3s}$ lay-up is a good selection for the composite bicycle wheel. Also, the weakest point and layer are found in this study.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

Strength Design of Lightweight Composite Bicycle Frame (복합재료 라미네이트 경량화 자전거 프레임의 강도 설계)

  • Lee, Jin Ah;Hong, Hyoung Taek;Chun, Heung Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.265-270
    • /
    • 2013
  • Strength design for a lightweight bicycle frame made of carbon/epoxy composite laminates was studied using Tsai-Wu's failure criterion. For the design of bicycle frames, reducing the weight of the frame is of great importance. Furthermore, the frame should satisfy the required strength under specific loading cases. In accordance with the European EN 14764 standard for bicycle frames, three loading cases-pedaling, vertical, and level loadings-were investigated in this study. Because of the anisotropic characteristics of composite materials, it is important to decide the appropriate stacking sequence and the number of layers to be used in the composite bicycle frame. From finite element analysis results, the most suitable stacking sequence of the fiber orientation and the number of layers were determined. The stacking sequences of $[0]_{8n}$, $[90]_{8n}$, $[0/90]_{2ns}$, $[{\pm}45]_{2ns}$, $[0/{\pm}45/90]_{ns}$ (n = 1, 2, 3, 4) were used in the analysis. The results indicated that the $[0/{\pm}45/90]_{3s}$ lay-up model was suitable for a composite bicycle frame. Furthermore, the weakest point and layer were investigated.