• Title/Summary/Keyword: Launch vehicle

Search Result 792, Processing Time 0.021 seconds

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine (액체메탄엔진용 믹싱헤드 일체형 다중점화장치)

  • Lim, Byoungjik;Lee, Junseong;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • We are developing a compact ignition device that can provide a multi-ignition capability for an upper stage methane engine of a two staged small satellite launch vehicle. Firstly, the multi-ignition device is designed and built as an integral part of an additively manufactured mixing head. Secondly, the ignition device requires no separate high-pressure vessels to store ignition propellants as they are branched out from the main feed lines for the mixing head. We performed experiments at various levels, including igniter autonomous tests, thrust chamber ignition and combustion tests on the new compact ignition device which is integrated in the thrust chamber of one-tonf class liquid oxygen/liquid methane engine, and confirmed stable ignition performance.

Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique (Vibration Correlation Technique을 이용한 내부 압력을 받는 금속재 단순 원통 구조의 비파괴적 전역 좌굴 하중 예측)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;Cho, Hyun-Jun;Kim, In-Gul;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Yeoung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Nondestructive method to predict buckling load for the propellant tank of launch vehicle should be evaluated. Vibration correlation technique can predict the global buckling load of unstiffened cylindrical structure with geometric initial imperfection using correlation of natural frequency and compressive load from compressive test below the buckling load. In this study, vibration and buckling tests of a thin metal unstiffened propellant tank model subjected to internal pressure and compressive loads were performed and the test results were used for VCT to predict global buckling load. For the vibration test of thin structure, non-contact excitation method using a speaker was used. The response was measured with piezoelectric polymer(PVDF) sensor. Prediction results of VCT were compared with the measured buckling load in the test and the nondestructive global buckling load prediction method was verified.

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite

  • Ryu, Kwangsun;Lee, Seunguk;Woo, Chang Ho;Lee, Junchan;Jang, Eunjin;Hwang, Jaemin;Kim, Jin-Kyu;Cha, Wonho;Kim, Dong-guk;Koo, BonJu;Park, SeongOg;Choi, Dooyoung;Choi, Cheong Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.117-126
    • /
    • 2022
  • The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.

Mission Performance Results of 15 CubeSats at the Contests(1st ~ 5th) and Consideration of an Improvement Scheme (큐브위성 경연대회(1~5회) 15기의 임무수행 결과 및 향상방안 고찰 )

  • Guee Won Moon;Cheol Hea Koo;In Hoi Koo
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.104-109
    • /
    • 2023
  • The Cube Satellite Contest has been held six times as of August 2023, and a total of 21 teams have been selected. Fifteen Cube Satellites selected in previous contests were successfully launched and entered into low-Earth orbit. The six Cube Satellites selected in the sixth contest in 2022 are currently undergoing detailed design, and are scheduled to be launched in 2025 using a Korean launch vehicle. In this study, we analyzed the initial operation reports submitted by the selected teams of the Cube Satellite Contest in 2012, 2013, 2015, 2017, and 2019 to assess mission performance and identify causes of mission failure. Based on the submitted reports, an improvement scheme to enhance mission success for future Cube Satellites is proposed.

Lessons Learned from Korea Pathfinder Lunar Orbiter Flight Dynamics Operations: NASA Deep Space Network Interfaces and Support Levels

  • Young-Joo Song;SeungBum Hong;Dong-Gyu Kim;Jun Bang;Jonghee Bae
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2023
  • On Aug. 4, 2022, at 23:08:48 (UTC), the Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was launched using a SpaceX Falcon 9 launch vehicle. Currently, KPLO is successfully conducting its science mission around the Moon. The National Aeronautics and Space Administration (NASA)'s Deep Space Network (DSN) was utilized for the successful flight operation of KPLO. A great deal of joint effort was made between the Korea Aerospace Research Institute (KARI) and NASA DSN team since the beginning of KPLO ground system design for the success of the mission. The efficient utilization and management of NASA DSN in deep space exploration are critical not only for the spacecraft's telemetry and command but also for tracking the flight dynamics (FD) operation. In this work, the top-level DSN interface architecture, detailed workflows, DSN support levels, and practical lessons learned from the joint team's efforts are presented for KPLO's successful FD operation. Due to the significant joint team's efforts, KPLO is currently performing its mission smoothly in the lunar mission orbit. Through KPLO cooperative operation experience with DSN, a more reliable and efficient partnership is expected not only for Korea's own deep space exploration mission but also for the KARI-NASA DSN joint support on other deep space missions in the future.

Optimization-based model correlation of satellite payload structure (위성 탑재체 구조물의 최적화 기반 모델 보정)

  • Do-hee Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.104-116
    • /
    • 2024
  • A satellite is ultimately verified by performing a coupled load analysis with the launch vehicle. To increase the accuracy of the coupled load analysis results, it is important to have good accuracy of the finite element model. Therefore, finite element model correlation is essential. In general, model correlation is performed by changing the material properties and thickness one by one, but this process takes a lot of time and cost. The current paper proposes an efficient model correlation method using optimization. Significant variables were selected through analysis of variance, and the time and cost required for analysis and optimization were reduced by using the Kriging surrogate model. The method proposed in this paper can be applied only with the vibration test results, and it has a great advantage in terms of efficiency in that it can significantly reduce the numerical calculation cost and time required.

Construction and Start-up Test of Hot-firing Test Facility for KSLV-II Combustion Chamber (한국형발사체 연소기 연소시험설비의 구축 및 시운전)

  • Lee, Kwang-Jin;Yi, Seung Jae;Seo, Daeban;Hwang, Chang Hwan;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;So, Younseok;Kim, Chae-Hyoung;Kim, Sunghyuk;Kim, Seung-Han;Cho, Namkyung;Han, Yeoung Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • This paper covers the result of construction and start-up tests of the KSLV(Korea Space Launch Vehicle)-II combustion chamber hot-firing test facility. This facility was constructed from 2012 to 2014. Start-up test of this facility began in the second half of 2014. Oxidizer cold flow test, fuel cold flow test and cooling water cold flow test were carried out as start-up test. Afterward, ignition test of combustion chamber was accomplished. The result of ignition test is applied to set up start-up sequence of KSLV-II combustion chamber and utilized as base line data for hot-firing test of low and normal design point.

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.109-118
    • /
    • 2018
  • Korea Aerospace Research Institute has developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducting a Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is an open cycle engine using a gas-generator. The SCCR engine with a closed cycle engine is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted.

Stakeholder Oriented Economical Efficiency Analysis on the Scenario to Implement Smart Transportation Services (지능형 운송 서비스 구축 시나리오에 대한 이해관계자 중심 경제성 분석)

  • Shin, KwangSup;Moon, Yongma;Hur, Wonchang;Kim, Woo Je
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • This research proposed a new method to evaluate the objective validity to launch smart transportation services that various stakeholders are complicatedly inter-connected. First of all, we have designed the fundamental business model to form the smart transportation services and defined the stakeholders taking part in the services. Also, the criteria to evaluate the economical validity has been proposed based on the relationship among stakeholders. Especially, in the case EV drivers and charging service providers, the economical validity depends on the scale of spreading. Therefore, we have compared the two extreme scenarios, the poor and stable level of EV spreading. According to the result, it may be said that EV drivers and charging service providers cannot be guaranteed the economical validity due to the burden of initial investment. On the contrary to this, suppliers of EV and charging gears may secure more than a certain level of profit. In addition, the government may have great profit due to reducing the CO2 emission and cost for importing energy sources. Therefore, it is needed to enhance the level of supporting EV drivers and charging service providers at the first stage. Also, the impact of the ratio of EV and charging service stations on the economical validity of smart transportation should be further investigated.