• Title/Summary/Keyword: Lattice strain

Search Result 165, Processing Time 0.023 seconds

Effect of Strain Path on Lattice Strain Evolution during Monotonic and Cyclic Tension of Magnesium Alloy

  • Yoon, Cheol;Gharghouri, Michael A.;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.221-225
    • /
    • 2015
  • In-situ neutron diffraction has been employed to examine the effect of strain path on lattice strain evolution during monotonic and cyclic tension in an extruded Mg-8.5wt.%Al alloy. In the cyclic tension test, the maximum applied stress increased with cycle number. Lattice strain data were acquired for three grain orientations, characterized by the plane normal to the stress axis. The lattice strain in the hard {10.0} orientation, which is unfavorably oriented for both basal slip and {10.2} extension twinning, evolved linearly throughout both tests during loading and unloading. The {00.2} orientation exhibited significant relaxation associated with {10.2} extension twinning. Coupled with a linear lattice strain unloading behavior, this relaxation led to increasingly compressive residual strains in the {00.2} orientation with increasing cycle number. The {10.1} orientation is favorably oriented for basal slip, and thus showed a soft grain behavior. Microyielding occurred in the monotonic tension test and in all cycles of the cyclic test at an applied stress of ~50 MPa, indicating that strain hardening in this orientation was not completely stable from one cycle to the next. The lattice strain unloading behavior was linear in the {10.1} orientation, leading to a compressive residual strain after every cycle, which, however, did not increase systematically from one cycle to the next as in the {00.2} orientation.

Measurements of Lattice Strain in $SiO_2/Si$ Interface Using Convergent Beam Electron Diffraction (수렴성빔 전자회절법을 이용한 $SiO_2/Si$ 계면 부위의 격자 변형량 측정)

  • Kim, Gyeung-Ho;Wu, Hyun-Jeong;Choi, Doo-Jin
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.73-79
    • /
    • 1995
  • The oxidation of silicon wafers is an essential step in the fabrication of semiconductor devices. It is known to induce degradation of electrical properties and lattice strain of Si substrate from thermal oxidation process due to charged interface and thermal expansion mismatch from thermally grown SiO, film. In this study, convergent beam electron diffraction technique is employed to directly measure the lattice strains in Si(100) and $4^{\circ}$ - off Si(100) substrates with thermally grown oxide layer at $1200^{\circ}C$ for three hours. The ratios of {773}-{973}/{773}-{953} Higher Order Laue Zone lines were used at [012] zone axis orientation. Lattice parameters of the Si substrate as a function of distance from the interface were determined from the computer simulation of diffraction patterns. Correction value for the accelerating voltage was 0.2kV for the kinematic simulation of the [012]. HOLZ patterns. The change in the lattice strain profile before and after removal of oxide films revealed the magnitudes of intrinsic strain and thermal strain components. It was shown that $4^{\circ}$ -off Si(100) had much lower intrinsic strain as surface steps provide effective sinks for the free Si atoms produced during thermal oxidation. Thermal strain in the Si substrate was in compression very close to the interface and high concentration of Si interstitials appeared to modify the thermal expansion coefficient of Si.

  • PDF

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

Effect of Microstructure and Unit Cell's Geometry on the Compressive Mechanical Response of Additively Manufactured Co-Cr-Mo Sheet I-WP Lattice

  • So-Yeon Park;Kyu-Sik Kim;Bandar Almangour;Kee-Ahn Lee
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1525-1529
    • /
    • 2022
  • Co-Cr-Mo based sheet I-WP lattice was fabricated via laser powder bed fusion. The effect of microstructure and the I-WP shape on compressive mechanical response was investigated. Results of compression test showed that yield strength of the sheet I-WP was 176.3 MPa and that of bulk Co-Cr-Mo (reference material) was 810.4 MPa. By applying Gibson-Ashby analytical model, the yield strength of the lattice was reversely estimated from that of the bulk specimen. The calculated strength of the lattice obtained was 150.7 MPa. The shape of deformed lattice showed collective failure mode, and its microstructure showed that strain-induced martensitic transformation occurred in the overall lattice. The deformation behavior of additively manufactured sheet I-WP lattice was also discussed.

Phase Diagrams and Stable Structures of Stranski-Krastanov Structure Mode for III-V Ternary Quantum Dots

  • Nakaima, Kazuno;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.81-114
    • /
    • 1999
  • The strain, surface and inerfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe (FM) mode, the Stranski-Krastanov (SK) mode an the Volmer-Wever (VW) mode. The free energy for each mode was estimated as functions of the thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the InPSb/InP and GaPSb/GaP systems which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which tow-dimensional (2D) layers precede the three-dimensional (3D) nucleation in the SK mode at x=1.0 depnds on the lattice misfit.

  • PDF

Effects of ZrC and VC Addition on the Diffusion Induced Recrystallization of TiC--$Cr_3C_2$ (TiC-$Cr_3C_2$ 계 확산구동 재결정에 미치는 ZrC와 VC 첨가영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.223-227
    • /
    • 1996
  • The effect of ZrC and VC addition on the diffusion induced recrystallization (DIR) of TiC-Cr3C2 has been investigated. With in creasing the amount of added ZrC to Cr3C2 the DIR of TiC was suppressed at the begining and then occurred. On the contrary the DIR was accelerated with the addition of VC to Cr3C2 Because the lattice parameters of (Ti, Cr)C and (Ti,V)C are smaller and that of (Ti, Zr)C is larger than that of TiC the lattice parameter of (Ti,Cr,Zr)C is expected to be similar to that of TiC,. The results indicate that the strain energy due to lattice mismatch between TiC and solid-solution carbide is the driving force of the observed energy due to lattice mismatch between TiC and solid-solution carbide is the driving force of the observed DIR.

  • PDF

Electric-Field-Induced Lattice Distortion and Related Properties in Relaxor Ferroelectrics (완화형 가유전체에서 전계인가에 따른 격자왜곡과 강유전물성의 상관관계)

  • 박재환;박재관;김윤호
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Effects of electric-field-induced lattice distortion on the polarization and strain were investigated in Pb(Mg/sub 1/3/Nb/sub 2/3)O₃ relaxor ferroelectric ceramics in the temperature range of -50℃∼90℃. The ratio of residual strain and polarization (S/sub r//P/sub r/ rarely depends on the temperature. However, the ratio of the electric field included strain and polarization (S/sub induced//P/sub induced/) increased as the temperature decreases below phase transition temperature. To explain these experimental results, a simple rigid ion model concentrating on only Bo/sub 6/ octahedron was suggested.

  • PDF

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

Lattice strain effects on superconductivity in $La_{2-x}Sr_{x}CuO_{4}$ single-crystalline films grown by IR-LPE technique

  • Tanaka, I.;Islam, A.T.M.N.;Wataudhi, S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.172-175
    • /
    • 2003
  • We have investigated effects of the lattice mismatch between the LPE films and the substrates. We have grown $La_{2-x}Sr_{x}CuO_{4}$(x=0.1 to 0.15) single crystalline films on single crystalline substrates having different lattice parameter ratio c/a e.g., $La_{2-x}Sr_{x}Cu_{1-y}Zn_{y}O_{4},\;La_{2-x}Ba_{x}CuO_{4},\; LaSrAlO_{4}\;and\;La_{2-x}Sr_{x}Cu_{1-y}Al_{y}O_{4}$ etc., using the IR-LPE technique. The superconducting properties of the grown films were found to vary significantly depending on the lattice mismatch with different substrates.

Phase diagrams adn stable structures of stranski-krastanov structure mode for III-V ternary quantum dots

  • Nakajima, Kazuo;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 1999
  • The strain, surface and interfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe(FM) mode, the Stanski-Krastanov(SK) mode and the Volmer-Weber(VW) mode. The free energy for each mode was estimated as functions of thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the INPSb/InP and GaPSb/GaP system which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which two-dimensional(2D) layers precede the three-dimensional(3D) nucleation in the SK mode at x=1.0 depends on the lattice misfit.

  • PDF