• 제목/요약/키워드: Lattice strain

검색결과 162건 처리시간 0.027초

가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석 (Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography)

  • 유영재;정성민;배시영
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • 오상호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Electrochemical Properties of LiNiyMn2-yO4 Prepared by the Solid-state Reaction

  • Song, Myoung-Youp;Kwon, Ik-Hyun;Shon, Mi-Suk
    • 한국세라믹학회지
    • /
    • 제40권5호
    • /
    • pp.401-404
    • /
    • 2003
  • LiN $i_{y}$M $n_{2-y}$ $O_4$were synthesized by calcining a mixture of LiOH, Mn $O_2$(CMD), and NiO at 40$0^{\circ}C$ for 10 h and then calcining at 85$0^{\circ}C$ for 48 h in air with intermediate grinding. The voltage vs. discharge capacity curves at a current density 300 $\mu$A/c $m^2$ between 3.5 V and 4.3 V showed two plateaus, but the plateaus became ambiguous as the y value increases. The sample with y=0.02 had the largest first discharge capacity, 118.1 mAh/g. As the value y increases from 0.02 up to 0.2, on the whole, the cycling performance became better. The LiN $i_{0.10}$M $n_{1.90}$ $O_4$sample had a relatively large first discharge capacity 95.0 mAh/g and showed an excellent cycling performance. The samples with larger lattice parameter have, in general, larger discharge capacities. The reduction curves in the cyclic voltammograms for the y=0.05-0.20 samples exhibit three peak showing that the reduction may proceed in three stages in these samples. For the samples with relatively large discharge capacity, the lattice destruction induced by strain causes the capacity fading of LiN $i_{y}$M $n_{2-y}$ $O_4$ with cycling.cling.ing.

InGaAsP 에피막의 Spinodal분해 조직구조가 Photoluminescence 특성에 미치는 영향 (Influences of Spinodal Decomposition of InGaAsP Layer on Photoluminescence Characteristics)

  • 이종원
    • 한국재료학회지
    • /
    • 제5권8호
    • /
    • pp.936-944
    • /
    • 1995
  • 본 논문에서는 저압 유기금속 기상성장(low pressure metal organic vapor phase epitaxy) 장치에 의해 성장된 InGaAsP/InP 구조의 상(phase) 분리현상(Spinodal 분해)이 photoluminescence (PL)의 강도와 반치폭(full-width at half maximum, FWHM)에 미치는 영향에 대해 연구하였다. 시료의 격자부정합은 double crystal x-ray diffractometer를 사용하여 측정하였고, InGaAsP에피막의 Spinodal분해조직은 투과전자현미경 (transmission electron microscopy, TEM)을 사용하여 관측하였다. 격자부정합에서 도출된 부정합응력과 Spinodal 모듈레이션의 주기(periodicity)와 밀접한 관계가 있음이 밝혀졌다. 또한 이러한 InGaAsP에피막의 미세조직 구조와 시료의 광전 특성이 어떤 관계가 있는지 알기 위해 PL 실험을 수행했으며, PL강도와 FWHM이 조성 모듈레이션의 주기에 강하게 의존한다는 것을 알 수 있었다. 이 현상을 심층적으로 연구하기 위해 부정합응력이 야기할 수 있는 interaction 탄성변형 에너지라는 새로운 함수를 유도하였으며 이에 의하여 실험결과를 설명할 수 있었다.

  • PDF

$L1_0$-TiAl 및 $L1_2-(Al,Cr)_3Ti$ 중에 $Al_2Ti$상의 석출거동에 관한 연구 (A Study on the Precipitation Behavior of $Al_2Ti$ Phase in $L1_0$-TiAl and $L1_2-(Al,Cr)_3Ti$)

  • 한창석
    • 열처리공학회지
    • /
    • 제21권1호
    • /
    • pp.20-25
    • /
    • 2008
  • Structural studies have been performed on precipitation hardening and microstructural variations found in Ti-Al-Cr ternary $L1_0$- and $L1_2$-phase alloys using transmission electron microscopy. Both the $L1_0$ and $L1_2$ phase alloys harden by aging at 973 K after solution annealing at higher temperatures. The amount of age hardening of the $L1_2$ phase alloy is larger than that of the $L1_0$ phase alloy. The phase separation between $L1_0$ and $L1_2$ phase have not been observed by aging at 973 K. But $Al_2Ti$ was formed in each matrix alloy during aging. The crystal structure of the $Al_2Ti$ phase is a $Ga_2Zr$ type in the $L1_0$ and a $Ga_2Hf$ type in the $L1_2$ phase, respectively. At the beginning of aging the fine coherent cuboidal $Al_2Ti$-phase are formed in the $L1_0$ phase. By further aging, two variants of $Al_2Ti$ precipitates grow along the two {110} habit planes. On the other hand, in the $L1_2$ phase, the $Al_2Ti$ phase forms on the {100} planes of the $L1_2$ matrix lattice. After prolonged aging the precipitates are rearranged along a preferential direction of the matrix lattice and form a domain consisting of only one variant. It is suggested that the precipitation of $Al_2Ti$ in each matrix alloy occurs to form a morphology which efficiently relaxes the elastic strain between precipitate and matrix lattices.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

HVPE 방법으로 성장된 알파-갈륨 옥사이드의 전처리 공정에 따른 특성 변화 (Effect of Pre-Treatment of Alpha-Ga2O3 Grown on Sapphire by Halide Vapor Phase Epitaxy)

  • 최예지;손호기;라용호;이영진;김진호;황종희;김선욱;임태영;전대우
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.426-431
    • /
    • 2019
  • In this study, we report the effect of pre-treatment of alpha-$Ga_2O_3$ grown on a sapphire substrate by halide vapor phase epitaxy (HVPE). During the pre-treatment process, 10 sccm of GaCl gas was injected to the sapphire substrate at $470^{\circ}C$. The surface morphologies of the alpha-$Ga_2O_3$ layers grown with various pre-treatment time (3, 5, and 10 min) were flat and crack-free. The transmittance of the alpha-$Ga_2O_3$ epi-layers was measured to analyze their optical properties. The transmittance was over 80% within the range of visible light. The strain in the alpha-$Ga_2O_3$ grown with a pre-treat 5 min was measured, and was found to be close to the theoretical XRD peak position. This can be explained by the reduction of strain having caused a lattice mismatch between the alpha-$Ga_2O_3$ layer and sapphire substrate. The calculated dislocation density of the screw and edge were $2.5{\times}10^5cm^{-2}$ and $8.8{\times}10^9cm^{-2}$, respectively.

과잉 PbO에 의한 (Pb,Y) $(Zr,Sn,Ti)O_3$세라믹스의 유전 및 전기장유기변형 특성 (Dielectric and Field-induced Strain Behaviors due to Excess PbO in Lead Yttrium Zirconate Stannate Titanate Ceramics)

  • 윤기현;김정희;강동헌
    • 한국재료학회지
    • /
    • 제10권1호
    • /
    • pp.34-40
    • /
    • 2000
  • 디지털형 압전/전왜 액츄에이터 응용을 위하여 상경계(반강유전상/강유전상) 조성인 $Pb_{0.94}Y_{0.04}[(Zr_0.6Sn_0.4)_{0.915}Ti_0.085]O_3$ (PYZST) 계를 택하여 과잉 PbO의 첨가량 및 소결 조건 변화에 따른 상전이 특성, 유전 특성 및 전기장 유기변형 특성을 연구하였다. 사방정 구조를 갖는 PYZST 세라믹스에서 과잉 PbO 첨가에 따른 결정구조의 변화는 거의 확인되지 않았으나, 소결 후 입자가 약간 작아지며 둥근 형태로 변화하였고 첨가량 증가에 따라 적정 소결온도는 감소하였다. 과잉 PbO의 첨가량이 증가함에 따라, 분극측정시 반강유전상이 보다 안정되는 경향을 보였고, 전계유도변형 측정시 인가전기장 제거상태에서의 변형의 형상기억성이 감소하고 디지털형 변형곡선 특성이 강화되었다. 또한 최대 유전상수와 전계 유기변형량은 감소하였으나 반면 상전이(반강유전상$\leftrightarrow$강유전상) 전기장 및 비저항은 증가하는 경향을 나타냈다. 이러한 결과는 과잉으로 첨가된 PbO에 의한 격자 결함반응 및 분역벽 이동 거동 가능성과 연관시켜 설명하였다.

  • PDF

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

Carbon-induced reconstructions on W(110)

  • 김지현;;;김재성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.362-362
    • /
    • 2010
  • Today, vast attention has been paid to periodic arrays of nanostructures due to their potential for applications such as memory with huge storage density. Such application requires large-scale fabrication of well ordered nano-sized structures. One of the most widely used methods for the ordered nanostructures is lithography. This top-down process, however, has the limit to reduce size. Here the promising alternative is the self-organization of ordered nano-sized structures such as large scale 2d carbon-induced reconstructions on W(110). In the present study, we report on the first well-resolved atomic resolution STM studies of the well-known R($15{\times}3$) and R($15{\times}12$) carbon induced reconstruction of the W(110). From the atomic image of R($15{\times}3$) for different values of tunneling gap resistance, we can tell there are no missing atoms in unit cells of R($15{\times}3$) and some atomic displacements are substantial from the clean W(110), even though not all the imaged position of atoms correspond to tungsten, but may include those of carbon. We are considering two cases; First case is related to lattice deformation, or top layer of W(110) is deformed in the process of relief of strain caused by random inserting of carbon atoms possibly in the interstitial position. In the second case, R($15{\times}3$) unit cell results from a coincidence lattice between clean W(110) substrate and tungsten carbide overlayer which has rectangular atomic arrangement and giving R($15{\times}3$) coincidence lattice. beta-W2C showing rectangular unit cell should be a candidate. Further, we report on new reconstructions. Unlike the well-known R($15{\times}12$) consisting of two parts, two inner structures between two "Backbone" structures. The new reconstruction, which we found for the first time, contains more parts between the "Backbone"s. Sometimes we can observe the reconstruction consists of only inner parts without "Backbone" parts. Thus, the observed reconstruction can be built by constructing of two types of "Lego"-like block. Moreover, the rectangle shape of "Backbone" transform to parallelogram-like shape over time, the so-called wavy-R($15{\times}12$). Adsorption of hydrogen can be the reason for this transformation.

  • PDF