• Title/Summary/Keyword: Lattice strain

Search Result 162, Processing Time 0.028 seconds

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography (가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석)

  • Yu, Yeong-Jae;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Electrochemical Properties of LiNiyMn2-yO4 Prepared by the Solid-state Reaction

  • Song, Myoung-Youp;Kwon, Ik-Hyun;Shon, Mi-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.401-404
    • /
    • 2003
  • LiN $i_{y}$M $n_{2-y}$ $O_4$were synthesized by calcining a mixture of LiOH, Mn $O_2$(CMD), and NiO at 40$0^{\circ}C$ for 10 h and then calcining at 85$0^{\circ}C$ for 48 h in air with intermediate grinding. The voltage vs. discharge capacity curves at a current density 300 $\mu$A/c $m^2$ between 3.5 V and 4.3 V showed two plateaus, but the plateaus became ambiguous as the y value increases. The sample with y=0.02 had the largest first discharge capacity, 118.1 mAh/g. As the value y increases from 0.02 up to 0.2, on the whole, the cycling performance became better. The LiN $i_{0.10}$M $n_{1.90}$ $O_4$sample had a relatively large first discharge capacity 95.0 mAh/g and showed an excellent cycling performance. The samples with larger lattice parameter have, in general, larger discharge capacities. The reduction curves in the cyclic voltammograms for the y=0.05-0.20 samples exhibit three peak showing that the reduction may proceed in three stages in these samples. For the samples with relatively large discharge capacity, the lattice destruction induced by strain causes the capacity fading of LiN $i_{y}$M $n_{2-y}$ $O_4$ with cycling.cling.ing.

Influences of Spinodal Decomposition of InGaAsP Layer on Photoluminescence Characteristics (InGaAsP 에피막의 Spinodal분해 조직구조가 Photoluminescence 특성에 미치는 영향)

  • Lee, Jong-Won
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.936-944
    • /
    • 1995
  • The effects of Spinodal decomposition induced phase separated microstructure of InGaAsP/InP heterostructure on photoluminescence(PL) intensity and FWHM(full-width at half maximum) were investigated in this study. Lattice mismatches were measured by double crystal x-ray diffractometer, and the microstructures of phase separated InGaAsP were observed by transmission electron microscopy. It was found that the misfit stress calculated from lattice mismatch was related to the periodicity of Spinodal modulation. Strong dependence of PL intensity and FWHM on the modulation periodicity was also found. For systematic understanding of these observations, the interaction elastic strain energy function induced by misfit stress was proposed. The calculation illustrated that the microstructure of the epilayer such as Spinodal decomposition played an important role in determining the optoelectronic properties such as PL intensity and PL FWHM.

  • PDF

A Study on the Precipitation Behavior of $Al_2Ti$ Phase in $L1_0$-TiAl and $L1_2-(Al,Cr)_3Ti$ ($L1_0$-TiAl 및 $L1_2-(Al,Cr)_3Ti$ 중에 $Al_2Ti$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Structural studies have been performed on precipitation hardening and microstructural variations found in Ti-Al-Cr ternary $L1_0$- and $L1_2$-phase alloys using transmission electron microscopy. Both the $L1_0$ and $L1_2$ phase alloys harden by aging at 973 K after solution annealing at higher temperatures. The amount of age hardening of the $L1_2$ phase alloy is larger than that of the $L1_0$ phase alloy. The phase separation between $L1_0$ and $L1_2$ phase have not been observed by aging at 973 K. But $Al_2Ti$ was formed in each matrix alloy during aging. The crystal structure of the $Al_2Ti$ phase is a $Ga_2Zr$ type in the $L1_0$ and a $Ga_2Hf$ type in the $L1_2$ phase, respectively. At the beginning of aging the fine coherent cuboidal $Al_2Ti$-phase are formed in the $L1_0$ phase. By further aging, two variants of $Al_2Ti$ precipitates grow along the two {110} habit planes. On the other hand, in the $L1_2$ phase, the $Al_2Ti$ phase forms on the {100} planes of the $L1_2$ matrix lattice. After prolonged aging the precipitates are rearranged along a preferential direction of the matrix lattice and form a domain consisting of only one variant. It is suggested that the precipitation of $Al_2Ti$ in each matrix alloy occurs to form a morphology which efficiently relaxes the elastic strain between precipitate and matrix lattices.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

Effect of Pre-Treatment of Alpha-Ga2O3 Grown on Sapphire by Halide Vapor Phase Epitaxy (HVPE 방법으로 성장된 알파-갈륨 옥사이드의 전처리 공정에 따른 특성 변화)

  • Choi, Ye-ji;Son, Hoki;Ra, Yong-Ho;Lee, Young-Jin;Kim, Jin-Ho;Hwang, Jonghee;Kim, Sun Woog;Lim, Tae-Young;Jeon, Dae-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.426-431
    • /
    • 2019
  • In this study, we report the effect of pre-treatment of alpha-$Ga_2O_3$ grown on a sapphire substrate by halide vapor phase epitaxy (HVPE). During the pre-treatment process, 10 sccm of GaCl gas was injected to the sapphire substrate at $470^{\circ}C$. The surface morphologies of the alpha-$Ga_2O_3$ layers grown with various pre-treatment time (3, 5, and 10 min) were flat and crack-free. The transmittance of the alpha-$Ga_2O_3$ epi-layers was measured to analyze their optical properties. The transmittance was over 80% within the range of visible light. The strain in the alpha-$Ga_2O_3$ grown with a pre-treat 5 min was measured, and was found to be close to the theoretical XRD peak position. This can be explained by the reduction of strain having caused a lattice mismatch between the alpha-$Ga_2O_3$ layer and sapphire substrate. The calculated dislocation density of the screw and edge were $2.5{\times}10^5cm^{-2}$ and $8.8{\times}10^9cm^{-2}$, respectively.

Dielectric and Field-induced Strain Behaviors due to Excess PbO in Lead Yttrium Zirconate Stannate Titanate Ceramics (과잉 PbO에 의한 (Pb,Y) $(Zr,Sn,Ti)O_3$세라믹스의 유전 및 전기장유기변형 특성)

  • Yun, Gi-Hyeon;Kim, Jeong-Hui;Gang, Dong-Heon
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.34-40
    • /
    • 2000
  • The $Pb_{0.94}Y_{0.04}[(Zr_{0.6}Sn_{0.4})_{0.915}Ti_{0.085}]O_3$ ceramics which corresponded to the antiferroelectric-ferroelectric phase boundary composition were prepared for digital-type-piezoelectric/electrostrictive device application. Their dielectric, field-induced polarization (P) and strain (X) behaviors were studied with variations in sintering condition and excess PbO content. The orthorhombic structure of specimens was hardly affected either by excess PbO addition or sintering temperature. With increasing excess PbO content, grains tended to be smaller and rounded ones, and the optimum sintering temperature was lowered. Excess PbO addition stabilized the antiferroelectric phase of the specimen effectively, which was confirmed by P-E and X-E analyses. Also the digital-type-strain character was found to be enhanced despite of slight increase in phase transition (AFE-FE) field and electrical resistivity, and decrease in maximum strain. These results were explained in terms of possible lattice defects and domain wall motion.

  • PDF

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

Carbon-induced reconstructions on W(110)

  • Kim, Ji-Hyeon;Rojas, Geoff;Anders, Axel;Kim, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.362-362
    • /
    • 2010
  • Today, vast attention has been paid to periodic arrays of nanostructures due to their potential for applications such as memory with huge storage density. Such application requires large-scale fabrication of well ordered nano-sized structures. One of the most widely used methods for the ordered nanostructures is lithography. This top-down process, however, has the limit to reduce size. Here the promising alternative is the self-organization of ordered nano-sized structures such as large scale 2d carbon-induced reconstructions on W(110). In the present study, we report on the first well-resolved atomic resolution STM studies of the well-known R($15{\times}3$) and R($15{\times}12$) carbon induced reconstruction of the W(110). From the atomic image of R($15{\times}3$) for different values of tunneling gap resistance, we can tell there are no missing atoms in unit cells of R($15{\times}3$) and some atomic displacements are substantial from the clean W(110), even though not all the imaged position of atoms correspond to tungsten, but may include those of carbon. We are considering two cases; First case is related to lattice deformation, or top layer of W(110) is deformed in the process of relief of strain caused by random inserting of carbon atoms possibly in the interstitial position. In the second case, R($15{\times}3$) unit cell results from a coincidence lattice between clean W(110) substrate and tungsten carbide overlayer which has rectangular atomic arrangement and giving R($15{\times}3$) coincidence lattice. beta-W2C showing rectangular unit cell should be a candidate. Further, we report on new reconstructions. Unlike the well-known R($15{\times}12$) consisting of two parts, two inner structures between two "Backbone" structures. The new reconstruction, which we found for the first time, contains more parts between the "Backbone"s. Sometimes we can observe the reconstruction consists of only inner parts without "Backbone" parts. Thus, the observed reconstruction can be built by constructing of two types of "Lego"-like block. Moreover, the rectangle shape of "Backbone" transform to parallelogram-like shape over time, the so-called wavy-R($15{\times}12$). Adsorption of hydrogen can be the reason for this transformation.

  • PDF