• Title/Summary/Keyword: Lattice mismatch

Search Result 161, Processing Time 0.12 seconds

Texturing of Cu Sheets and Fabrication of Oxide Buffer Layers for YBCO Superconductor Films (YBCO 초전도체막을 위한 Cu 판의 배향화 및 중간 산화층의 제조)

  • Kim, Myeong-Hui;Kim, Eun-Gene;Han, Sang-Chul;Sung, Tae-Hyun;Kim, Sang-Joon;No, Kwang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.352-357
    • /
    • 1999
  • The Cu sheets were selected for the substrate of the superconductor films. Pure Cu sheets with the thickness of 50${\mu}$m were fabricated using hot and cold rolling. The Cu sheets were heat treated to induce the biaxial texturing. The z-axis and x-y plane texturing of Cu sheets heat treated at different conditions were analyzed using XRD and a best heat treatment condition for the texturing was selected. ZrO$_2$ film was dip coated on Cu sheets heat treated at the best condition to prevent possible reaction between Cu sheets and YBCO superconductors, to reduce possible cracking due to thermal expansion mismatch and to decrease the lattice mismatch for biaxial texturing. The texturing of the oxide buffer layers were also studied.

  • PDF

Ge Crystal Growth on Si Substrate for GaAs/Ge/Si Structure by Plasma-Asisted Epitaxy (GaAs/Ge/Si 구조를 위하여 PAE법을 이용한 Si 기판위에 Ge결정성장)

  • 박상준;박명기;최시영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 1989
  • Major problems preventing the device-quality GaAs/Si heterostructure are the lattice mismatch of about 4% and difference in thermal expansion coefficient by a factor of 2.64 between Si and GaAs. Ge is a good candidate for the buffer layer because its lattice parameter and thermal expansion coefficient are almost the same as those of GaAs. As a first step toward developing heterostructure such as GaAs/Ge/Si entirely by a home-built PAE (plasma-assisted epitaxy), Ge films have been deposited on p-type Si (100)substrate by the plasma assisted evaporation of solid Ge source. The characteristics of these Ge/Si heterostructure were determined by X-ray diffraction, SEM and Auge electron spectroscope. PAE system has been successfully applied to quality-good Ge layer on Si substrate at relatively low temperature. Furthermore, this system can remove the native oxide(SiO2) on Si substrate with in-situ cleaning procedure. Ge layer grown on Si substrate by PAE at substrate temperature of 450\ulcorner in hydrogen partial pressure of 10mTorr was expected with a good buffer layer for GaAs/Ge/Si heterostructure.

  • PDF

Effect of buffer layer on YBCO film deposited on Hastelloy substrate ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.873-875
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_{2}Cu_{3}O_{7-\delta}$ thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrate with $CeO_2$ and $BaTiO_3$ buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with YBCO. $CeO_2$ layer may be helpful for power transmission due to its conducting property. In order to enhance the crystallization of YBCO films on metallic substrates. we deposited $CeO_2$ and $BaTiO_3$ buffer layers at various temperatures. The YBCO superconducting tape fabricated with $BaTiO_3$ and $CeO_2$ buffer layers shows 85K of transition temperature and about $8.4{\times}10^4A/cm^2$ of critical current density at 77K.

  • PDF

Epitaxial Growth and Evaluation of Magnetic Garnet Films for Optical Current Transducers (광 CT용 자성 가넷 막의 에피택시 육성 및 평가)

  • Cho, Jae-Kyong
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.246-252
    • /
    • 2007
  • This paper describes the effect of the mixing ratio of starting materials and the growth parameters of magnetic garnet films by LPE on the properties of the films and suggests the conditions to obtain the films suitable for the Faraday rotators of the optical CTs. The properties of the films investigated for the evaluation of the films were thickness, surface morphology, X-ray diffraction, lattice constant, lattice mismatch between film and substrate (single crystal nonmagnetic wafer), and Faraday rotation angle. Optical CTs have been fabricated and evaluated using the films grown.

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF

A Study on the Perpendicular Magnetic Anisotropy in Co/Pd artificial Superlattices Prepared by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링에 의해 형성된 Co/Pd 인공초격자의 수직자기이방성에 관한 연구)

  • Park, Ju-Uk;Ju, Seung-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.251-256
    • /
    • 1992
  • Artificial superlattices of Co/Pd were prepared by RF magnetron sputtering Multilayered structure and compositional modulation were analyzed with a side angle x-ray diffractometer. It has been found that expansion of Co lattice occured in this artificial superlattice due to the lattice mismatch between Co and Pd. Perpendicular magnetic anisotropy could be observed when the Co layer thickness became less than 8${\AA}$ and maximum coercivity of 2350 Oe could be obtained in [Co(2.5 ${\AA}$)/Pd(9.3 ${\AA})]_{50}$/Pd$(200\;{\AA})$ with a perfect squareness of magnetic hysteresis loop. Characteristic of perpendicular magnetic anisotropy in Co/Pd superlattices could be related to the expansion of Co lattice caused by Pd layer and it turned out that as the thickness of Pd layer increased, perpendicular magnetic anisotropy increased. The interface anisotropy energy and volume anisotropy energy were calculated to be 0.29 ergs/$cm^2$ and -$6.9{\times}10^6$ ergs/$cm^3$ respectively, which are consistent with the values reported elsewhere.

  • PDF

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

Low-temperature growth of epi-Ge thin films by Reactive thermal CVD (반응성열CVD를 이용한 고효율 박막태양전지용 게르마늄박막의 저온에피성장)

  • Lim, Cheolhyun;Song, Sungheon;Lee, Sukho;Hanna, Junichi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.102.1-102.1
    • /
    • 2010
  • 고효율 멀티정션박막태양전지의 바텀셀 적용을 목적으로, 반응성CVD(Reactive thermal CVD)기술을 이용, $Si_2H_6+GeF_4$를 원료가스로, 이들이 가진 산화환원반응을 이용하여 400도 이하의 저온에서 Ge 및 Si 기판에 Ge을 에피성장 시켰다. Ge 기판위의 호모에피막의 경우, $2.5{\AA}/sec$의 성장속도와 99%의 Ge조성을 보였고, RHEED 및 HR-XRD를 통한 결정성 평가 결과, 고품질의 Ge 에피막의 성장이 확인되었다. 동일한 성장조건을 Si기판에 헤테로에피성장 시켰을 경우, 4% 격자불일치에 의해 막품질이 저하되는 것을 확인하였다. 이를 개선하기 위하여 저온에서 제작한 버퍼층에 대한 논의를 하고자 한다.

  • PDF

NSMM을 통한 Bi:YIG박막의 Bi농도에 따른 마이크로파 특성 연구

  • Lee, Han-Ju;Yun, Yeong-Un;Kim, Tae-Dong;Yu, Hyeong-Geun;Kim, Song-Hui;Balt, Erdene;Lee, Gi-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.142-142
    • /
    • 2009
  • Bismuth-substituted yttrium iron garnet(Bi-YIG; $Bi_xY_{3-x}Fe_5O_{12}$, x=0, 0.5, 1.0, 1.5, 2.0) thin films were fabricated on glass substrates using a metal organic decomposition (MOD) method. The dielectric property was measured by NSMM(Near-field scanning microwave microscopy) system that operating frequency is 4 Ghz. The obtained reflection coefficient $S_{11}$ of the Bi:YIG thin films with different bismuth concentration was increased as the bismuth concentration increased due to the lattice mismatch and vacancy of ions because of a lager ionic radius of bismuth ion than yttrium ion.

  • PDF