• Title/Summary/Keyword: Lattice materials

Search Result 787, Processing Time 0.023 seconds

MOLECULAR DYNAMICS SIMULATION OF INDENTATION ON SILVER COATED COPPER NANOSTRUCTURE

  • Kim, Am-Kee;Trandinh, Long;Kim, Il-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1794-1799
    • /
    • 2008
  • The effect of misfit on the indentation behaviour of silver coated copper multilayer was studied by molecular dynamics simulation. It was found that the misfit bands on interface formed by the mismatch of lattice structure between copper and silver in slip direction [110] and the dislocation band width depended on the mismatched lattice constants of materials. More dislocations were created and glided by indentation, which created a "four-wing flower" structure consisting of pile. up of dislocation at the interface. The size of "flower" depended on the thickness of silver layer. The critical thickness for "flower" was approximately 4nm above which the "flower" disappeared. As the result, deformation mechanisms such as dislocation pile-up, dislocation cross-slip and movement of misfit dislocation were revealed. Only silver atoms in the dislocation pile-up were involved in the creation of the "flower" while the dislocations in copper were glided in slip direction on interface.

  • PDF

Crystallinity and Internal Defect Observation of the ZnTe Thin Film Used by Opto-Electronic Sensor Material (광소자로 사용되는 ZnTe박박의 결정성에 따른 결함 관찰)

  • Kim, B.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • ZnTe films have been grown on (100) GaAs substrate with two representative problems. The one is lattice mismatch, the other is thermal expansion coefficients mismatch of ZnTe /GaAs. It claims here, the relationship of film thickness and defects distribution with (100) ZnTe/GaAs using hot wall epitaxy (HWE) growth was investigated by transmission electron microscopy (TEM). It analyzed on the two-sort side using TEM with cross-sectional transmission electron microscopy (XTEM) and high-resolution electron microscopy (HREM). Investigation into the nature and behavior of dislocations with dependence-thickness in (100) ZnTe/ (100) GaAs hetero-structures grown by transmission electron microscopy (TEM). This defects range from interface to 0.7 $\mu\textrm{m}$ was high density, due to the large lattice mismatch and thermal expansion coefficients. The defects of low density was range 0.7$\mu\textrm{m}$~1.8$\mu\textrm{m}$. In the thicker range than 1.8$\mu\textrm{m}$ was measured hardly defects.

Luminescent characteristics with coupling structure of Eu for ZnO:Eu Phosphor (Zno:Eu 형광체의 Eu 결합 구조에 따른 발광 특성)

  • 박용규;한정인;조황신;주성후
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.763-769
    • /
    • 1997
  • In this study we have synthesized Zno:Eu phosphors under various sintering atmospheres and temperatures. The analysis of X-ray diffractometer measurement indicates that for Zno:EuCl$_3$ phosphors sintered in air and vacuum 뗘 exists in the host lattice as Eu$_2$O$_3$and EuOCl respectively. From the photoluminescence for the phosphors sintered in vacuum Eu removes the broad-band emission of the ZnO host consequently isolating the red emission due to Eu$^{3+}$ ion and improves the color purity of red emission. The photoluminescence excitation and time resolving spectrum measurements suggest that energy-transfer process occurres from the self-activated defect center in ZnO host the Eu$^{3+}$ ion which exist in the host lattice in the form of EuOCl.

  • PDF

The Elimination Characteristics by Impressed Voltage of Holography Grating in Chacogenide Thin Film

  • Lee Ki-Nam;Yeo Cheol-Ho;Yang Sung-Jun;Chung Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.219-222
    • /
    • 2004
  • This paper discovers that there are some peculiar properties that can remove holography grating, which was made in chacogenide thin film by impressed voltage. The thin films were used are $As_{40}Ge_{10}Se_{15}S_{35}$, and we use He-Ne laser in order to form thin films. I-V curved line in a thin film before a lattice was made has the critical point, about 3.7 V. Moreover, the I-V curved line increased current intensity at over 4 V after it made thin film. In addition, while holography grating is being made, and when it has the highest diffraction efficiency, a lattice can be deleted if put more voltage into it.

The Role of Calcium as a Reduction Inhibitor in $BaTiO_3$ (Ca 첨가에 의한 $BaTiO_3$의 환원억제기구)

  • Hwang, Y.;Kim, Y.H.;Park, S.J.
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.741-746
    • /
    • 1990
  • Dielectrics which do not lose their high insulation resistance in reducing atmosphere are necessary for multilayer ceramic capacitors with Ni internal electrode. In this study we investigated the Ca ion site occupancy in A-site excess Ca-doped BaTiO3 by measuring the insulation resistance, lattice constant and Curie temperature. Its Curie temperature, which was lower than that of the pure BaTiO3, was more lowered by sintering in reducing atmosphere. Lattice constnat of c-axis decreased and that of a-axis increased, suggesting substitution of Ca ions for Ti ions. Hence CaTi" acts as an acceptor to maintain high insulation resistance.ance.

  • PDF

Synthesization of ZnO nanomaterials

  • Lee, Jong-Soo;Min, Byung-Don;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.1-5
    • /
    • 2003
  • ZnO nanobelts, nanorods, and nanowires were synthesized at three different substrate temperatures from the thermal evaporation of ball-milled ZnO powders at 1380$^{\circ}C$. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice planes, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice planes, respectively. In cathodoluminescence (CL), the peak energy of near bandedge (NBE) emission was determined for nanobelts, nanorods, and nanowires.

The characteristic study of amorphous chalcogenide As-Ge-Se-S thin film for photonic crystal application (포토닉 크리스탈 응용을 위한 비정질 칼코게나이드 As-Ge-Se-S 박막의 특성 연구)

  • Nam, Ki-Hyeon;Ju, Long-Yun;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.77-78
    • /
    • 2007
  • In this paper, we suppose that the 1-dimensional photonic crystal using holography lithography. We used Ag doped amorphous AsGeSeS which belongs in the chalcogenide materials have sensitive photoluminescence property. The purpose of this experiment is the process to complete 3-D photonic crystal after making 2-D photonic crystal. The lattice formation was made an observation by irradiating He-Ne laser with the AsGeSeS film leaned obliquely. Then, by measuring formed diffraction beam, the diffraction lattice was calculated.

  • PDF

Simulation on the Microstructure Development of Porous Materials with Respect to the Surface Energy Anisotropy (표면에너지의 이방성에 따른 다공체의 조직변화 시뮬레이션)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.500-506
    • /
    • 2007
  • The effects of anisotropic surface energy on the microstructure development of porous materials have been studied through Monte Carlo simulation using a three dimensional lattice. The changes in porosity ($f_v$), mean grain diameter ($D_s$), fraction of connected pores ($f_{v,c}$) and contiguity of the solid phase (C) were examined in cases with three different ${\gamma}_{SV}$ relations and initial grain diameters ($D_{s,o}$). It has been found that larger ${\gamma}_{SV}$ enhances sintering of particles and increases C and does not change $D_s$. And Introducing anisotropic ${\gamma}_{SV}$ brought an increase in $f_v$ and $f_{v,c}$ and an decrease in $D_s$ and C, and this tendency become more marked for fine $D_{s,o}$.

Analysis of Influence Factors on Dynamic Properties of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 동적특성에 영향을 미치는 요인 분석)

  • Kim, Heung-Sik;Joo, Si-Woong;Kim, Dae-Jun;Kim, Byeung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.946-949
    • /
    • 2005
  • In this paper, influence factors on dynamic properties of floor impact noise insulation materials are suggested. For this purpose measurements on the dynamic stiffness and the loss factor of resilient materials are carried out by Korea standard (KS F 2868) according to the change of density, thickness, design pattern, and composition of materials. As a result the values of dynamic stiffness was decreased at high density and thick thickness, and that of loss factor was increased at low density. For dynamic properties, the pattern of lattice and waffle type material is better than that of plat type, and the mixed composition of materials is better than the composition of double layer materials at same thickness.

  • PDF

Analysis and Simulation of Ultrasonic Wave Propagation and Scattering in Unidirectional Fiber Composites (단일방향 섬유 복합재료 내의 초음파 전파 및 산란 현상의 해석과 시뮬레이션)

  • Lee, Choon-Jae;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • Ultrasonic testing of composite materials is much more difficult than that of isotropic materials, because of the beam skew phenomenon caused by their elastic anisotropy. An established analytical method exists for elastic wave propagation in anisotropic media as a result of previous research efforts. Yet, due to the complexity of the analytical method, solution of real problems must resort to the numerical method. In this work, analytical solutions have first been obtained for the wavefield due to a point source in a unidirectional fiber-reinforced composite, which may be modeled as transversely isotropic. Then, the corresponding numerical solutions have been obtained using the mass-spring lattice model(MSLM). The two solutions have agreed well with each other. Other problems such as reflection from free boundaries and scattering from cracks have also been solved numerically, and the results have been investigated from the viewpoint of wave mechanics. The numerical model whose validity has been confirmed by this work will be of great use in simulating ultrasonic testing of composite materials.

  • PDF