• Title/Summary/Keyword: Lattice energy

Search Result 680, Processing Time 0.031 seconds

Detector Foil Self-Shielding Correction Factors

  • Kwon, Oh-Sun;Kim, Bong-Ghi;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.197-201
    • /
    • 1996
  • In the detail reaction-rate measurements in a critical assembly using the foil activation method, the measured activations of detector foils have inevitably errors caused by detector foil self-shielding effect. If neutron flux could be approximated to Westcott flux: i.e. well thermalized Maxwellian distribution, these activations of detector foil could be corrected to represent the unperturbated flux at any detected position in the cell with using Westcott option and reaction-rate option of the lattice code, WIMS-AECL. These calculated detector material self-shielding correction factors of the tested fuel, CANFLEX provided much information about neutron spectrum of test lattice cell as well as the correction factors themselves. The results could be verified by another lattice calculations.

  • PDF

Numerical Simulation of Thermal Lattice Boltzmann Model with a Modified In-Ternal Energy Non-Equilibrium First-Order Extrapolation Boundary Condition (수정된 내부 에너지 비평형 1차 외삽 경계조건을 적용한 열 유동 격자 볼츠만 모델에 관한 수치적 연구)

  • Jeong, Hae-Kwon;Kim, Lae-Sung;Lee, Hyun-Goo;Lee, Jae-Ryong;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.620-627
    • /
    • 2007
  • In this paper, we adapt a modified internal energy non-equilibrium first-order extrapolation thermal boundary condition to the thermal lattice Boltzmann model (TLBM). This model is the double populations approach to simulate hydrodynamic and thermal fields. The bounce-back boundary condition which is a traditional boundary condition of lattice Boltzmann method has only a first order in numerical accuracy at the boundary and numerical instability. A non-equilibrium first-order extrapolation boundary condition has been verified to be of better numerical stability than the bounce-back boundary condition and this boundary condition is proved to be of second-order accuracy for the flat boundaries. The two-dimensional natural convection flow in a square cavity with Pr=0.71 and various Rayleigh numbers are simulated. The results are found to be in good agreement with those of previous studies.

HEXKIN : A Quasistatic Approach to Spatial Kinetics Problems in a Hexagonal Lattice Reactor

  • Kim, Hyun-Dae;Oh, Se-Kee;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 1980
  • The quasistatic approximation is incorporated in HEXKIN, a 2-group, 2-dimensional reactor kinetics code specially developed for a hexagonal lattice-type reactor. The code allows maximum 15 delayed neutron groups, 279 lattice points, and 500 different driving functions to be able to initiate perturbation at each lattice point. Reactivity feedback due to power-dependent fuel temperature change is also involved. To check the accuracy of the code, a result of numerical experiment is compared with the measurement at the Savannah River Laboratory. The experiment was specifically designed to emphasize delayed neutron holdback. The calculated flux tilts agree with the measured flux tilts within the small uncertainty of the measurements.

  • PDF

The Stability Analysis of Offshore Lattice Boom Crane (해양플랜트용 격자 붐 크레인의 안전성 평가)

  • Kim, Ji-Hye;Jung, Yong-Gil;Huh, Sun-Chul
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2018
  • The safety of structure was evaluated by taking into consideration the complex marine environmental conditions of the Lattice boom crane, which is widely used in offshore plants due to less influence by wind. CFX analysis was carried out to take into account the influence of wind speed, and the result was applied as a boundary condition to perform static analysis according to the luffing angles of $28^{\circ}$, $61^{\circ}$, and $80^{\circ}$ in the on board and off board, respectively. In addition, the Lattice Boom Crane is large slender structure, and the possibility of buckling is interpreted under three conditions where the biggest stress occurs. All conditions satisfied the safety requirements of the Classification Regulations. Also, as a result of the buckling analysis, the load less than the critical load was applied so buckling does not occur.

The Magnetism and Electronic Structures of Ru Monolayer with Square Lattice (사각형구조를 갖는 Ru 단층의 자성과 전자구조)

  • 조이현;김인기;이재일;장영록;박인호;최성을;권명회
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.127-130
    • /
    • 1999
  • The magnetism and electronic structure of Ru monolayer with square lattice is investigated using the FLAPW band method. The dependence of total energies on the lattice constant was calculated for three magnetic states, i.e.,para-,ferro-, and antiferromagnetic ones. It was found that there is no energy difference between para-and antiferromagnetic states for all the lattice constant. The possibility of antiferromagnetism in square Ru monolayer is thus excluded. The ferromagnetic state is most stable for the lattice constants greater than 7.30 a.u. The energy minimum is found at the lattice constant of 6.53 a.u. Where it is paramagenetic. It is calculated that the magenetic moment is 2.49 ${\MU}_B$ at 7.72 a.u., which is close to the lattice constant of Ag. The magnetic moment is almost saturated to be ${\MU}_B$ at the lattice constant of 7.86 a.u.

  • PDF

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

The Effect of Vertical Strut in Circular Arch Lattice Structure by Selective Laser Sintering for Lightweight Structure

  • Sangwon Lee;Jae-An Jeon;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • The sandwich structure, consisting of a core and a face sheet, is used for lightweight structural application. Generally, cellular structures like honeycomb, foam, and lattice structures are utilized for the core. Among these, lattice structures have several advantages over other types of structures. In other studies, curved lattice structures were reported to have higher mechanical properties than straight structures by converting shear stresses acting on the structure into compressive stresses. Moreover, the addition of vertical struts can have a positive effect on the mechanical properties of the lattice structure. For the purpose, two lattice structures with Circle Arch (CC) and Circular Arch with a vertical column (CC_C) were studied, which were fabricated by using selective laser sintering was conducted. The result showed that CC_C has dramatic performance improvements in specific strength, modulus, and strain energy density compared to CC, confirming that vertical struts played a significant role in the lattice core. Finite element analysis was employed to determine the cause of the stress behavior of CC and CC_C. This study is expected to help design structurally superior lattice cores and sandwich structures.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation (분자 동역학 전산모사에 의한 비정질 탄소 필름의 합성거동 연구)

  • 이승협;이승철;이규환;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice

  • Liu, Baiyili;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.371-393
    • /
    • 2016
  • We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.