Browse > Article
http://dx.doi.org/10.12989/csm.2016.5.4.371

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice  

Liu, Baiyili (HEDPS, CAPT, and LTCS, College of Engineering, Peking University)
Tang, Shaoqiang (HEDPS, CAPT, and LTCS, College of Engineering, Peking University)
Publication Information
Coupled systems mechanics / v.5, no.4, 2016 , pp. 371-393 More about this Journal
Abstract
We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.
Keywords
heat jet approach; atomic simulations; finite temperature; square lattice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ai, B. and Hu, B. (2011), "Heat conduction in deformable frenkel-kontorova lattices: Thermal conductivity and negative differential thermal resistance", Phys. Rev. E., 83(1), 011131.   DOI
2 Andersen, H.C. (1980), "Molecular dynamics simulations at constant pressure and/or temperature", J. Chem. Phys., 72(4), 2384-2393.   DOI
3 Barik, D. (2006), "Heat conduction in 2D harmonic lattices with on-site potential", Europhys. Lett., 75(1), 42-48.   DOI
4 Berendsen, H.J., Postma, J.V., Van Gunsteren, W.F., DiNola, A.R.H.J. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81(8), 3684-3690.   DOI
5 Born, M. and Huang, K. (1954), Dynamical Theory of Crystal Lattices, Clarendon, Oxford.
6 Bussi, G. and Parrinello, M. (2007), "Accurate sampling using Langevin dynamics", Phys. Rev. E., 75(5), 056707.   DOI
7 Dhar, A. (2008), "Heat transport in low-dimensional systems", Adv. Phys., 57(5), 457-537.   DOI
8 Dhar, A., Venkateshan, K. and Lebowitz, J.L. (2011), "Heat conduction in disordered harmonic lattices with energy-conserving noise", Phys. Rev. E., 83(2), 021108.   DOI
9 Giardina, C., Livi, R., Politi, A. and Vassalli, M. (2000), "Finite thermal conductivity in 1D lattices", Phys. Rev. L., 84(10), 2144-2147.   DOI
10 Hatano, T. (1999), "Heat conduction in the diatomic toda lattice revisited", Phys. Rev. E., 59(1), R1-R4.
11 Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A., 31(3), 1695-1697.   DOI
12 Jackson, E.A. and Mistriotis, A.D. (1989), "Thermal conductivity of one-and two-dimensional lattices", J. Phys. Condens. Matt., 1(7), 1223-1238.   DOI
13 Karpov, E.G., Park, H.S. and Liu, W.K. (2007), "A phonon heat bath approach for the atomistic and multiscale simulation of solids", Int. J. Numer. Meth. Eng., 70(3), 351-378.   DOI
14 Lepri, S., Livi, R. and Politi, A. (2003), "Thermal conduction in classical low-dimensional lattices", Phys. Rep., 377(1), 1-80.   DOI
15 Lippi, A. and Livi, R. (2000), "Heat conduction in two-dimensional nonlinear lattices", J. Stat. Phys., 100(5), 1147-1172.   DOI
16 Nishiguchi, N., Kawada, Y. and Sakuma, T. (1992), "Thermal conductivity in two-dimensional monatomic non-linear lattices", J. Phys. Condens. Matt., 4(50), 10227-10236.   DOI
17 Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81(1), 511-519.   DOI
18 Pang, G. and Tang, S. (2011), "Time history kernel functions for square lattice", Comput. Mech., 48(6), 699-711.   DOI
19 Savin, A.V. and Kosevich, Y.A. (2014), "Thermal conductivity of molecular chains with asymmetric potentials of pair interactions", Phys. Rev. E., 89(3), 032102.
20 Tang, S. (2008), "A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids", J. Comput. Phys., 227(8), 4038-4062.   DOI
21 Tang, S. (2010), "A two-way interfacial condition for lattice simulations", Adv. Appl. Math. Mech., 2, 45-55.
22 Tang, S. and Liu, B. (2015), "Heat jet approach for atomic simulations at finite temperature", Comm. Comput. Phys., 18(5), 1445-1460.   DOI
23 Tang, S., Zhang, L., Ying, Y.P. and Zhang, Y.J. "A finite difference approach for finite temperature multiscale computations", Preprint.
24 Yang, L. (2002), "Finite heat conduction in a 2D disorder lattice", Phys. Rev. Lett., 88(9), 094301.   DOI
25 Wang, X. and Tang, S. (2013), "Matching boundary conditions for lattice dynamics", Int. J. Numer. Meth. Eng., 93(12), 1255-1285.   DOI
26 Xiong, D., Wang, J., Zhang, Y. and Zhao, H. (2010), "Heat conduction in two-dimensional disk models", Phys. Rev. E., 82(3), 030101.
27 Xiong, D., Zhang, Y. and Zhao, H. (2014), "Temperature dependence of heat conduction in the fermi-pastaulam-beta lattice with next-nearest-neighbor coupling", Phys. Rev. E., 90(2), 022117.
28 Yang, L., Grassberger, P. and Hu, B. (2006), "Dimensional crossover of heat conduction in low dimensions", Phys. Rev. E., 74(6), 062101.
29 Zhong, Y., Zhang, Y., Wang, J. and Zhao, H. (2012), "Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions", Phys. Rev. E., 85(6), 060102.