• 제목/요약/키워드: Lattice contraction

검색결과 22건 처리시간 0.015초

냉간 압연된 Alloy 600에서 등온 및 등시 소둔에 의한 잔류응력의 변화 (Residual Stress Variation by Isothermal and Isochronal Annealing in Cold Rolled Alloy 600)

  • 김성수;박덕근;정용무
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.462-467
    • /
    • 2011
  • In order to understand why annealing at $480^{\circ}C$ for several hour prevents the initiation of PWSCC, the residual stress variation with isothermal annealing at $480^{\circ}C$ and isochronal annealing between 480 and $800^{\circ}C$ in cold rolled Alloy 600 was investigated by the XRD method. The isothermal annealing decreased residual stress slightly in the rolling direction but not in the transverse direction, whereas the isochronal annealing for two hours increased residual stress. It seemed that the decrease in residual stress by isothermal annealing was due to lattice contraction by an ordering reaction because the isothermal annealing increased hardness. The effects of the isochronal annealing could be interpreted as the influence of thermal expansion and a disordering reaction.

충격파 유동노출에 따른 황화납 나노소재의 미세구조 및 자기광학적 특성 분석에 관한 실험적 연구 (Effect of Shock Wave Exposure on Structural, Optical and Magnetic Properties of Lead Sulfide Nanoparticles)

  • 김기원;사크티벨;사하데반;시바프라카시;김익현
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.18-27
    • /
    • 2024
  • A series of shock wave pulses with Mach number 2.2 of 100, 200, and 300 shocks were applied to lead sulfide (PbS) nanomaterials at intervals of 5 sec per shock pulse. To investigate the crystallographic, electronic, and magnetic phase stabilities, powder X-ray diffractometry (XRD), diffused reflectance spectroscopy (DRS), and vibrating-sample magnetometry (VSM) were employed. The material exhibited a rock salt structure (NaCl-type structure); XRD results indicated that material is monoclinic with space group C121 (5). Further, XRD results showed shifts due to lattice contraction and expansion when material was subjected to shock wave pulses, indicating stable material structure. Based on the data obtained, we believe that the PbS material is a good choice for high-pressure, high-temperature, and aerospace applications due to its superior shock resistance characteristics.