DOI QR코드

DOI QR Code

Residual Stress Variation by Isothermal and Isochronal Annealing in Cold Rolled Alloy 600

냉간 압연된 Alloy 600에서 등온 및 등시 소둔에 의한 잔류응력의 변화

  • Kim, Sung Soo (Nuclear Materials Research Dept. Korea atomic Energy Research Institute) ;
  • Park, Duck Geun (Nuclear Materials Research Dept. Korea atomic Energy Research Institute) ;
  • Cheong, Young Moo (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
  • 김성수 (한국원자력연구원 원자력재료연구부) ;
  • 박덕근 (한국원자력연구원 원자력재료연구부) ;
  • 정용무 (한국원자력연구원 원자력재료연구부)
  • Received : 2010.08.02
  • Published : 2011.06.25

Abstract

In order to understand why annealing at $480^{\circ}C$ for several hour prevents the initiation of PWSCC, the residual stress variation with isothermal annealing at $480^{\circ}C$ and isochronal annealing between 480 and $800^{\circ}C$ in cold rolled Alloy 600 was investigated by the XRD method. The isothermal annealing decreased residual stress slightly in the rolling direction but not in the transverse direction, whereas the isochronal annealing for two hours increased residual stress. It seemed that the decrease in residual stress by isothermal annealing was due to lattice contraction by an ordering reaction because the isothermal annealing increased hardness. The effects of the isochronal annealing could be interpreted as the influence of thermal expansion and a disordering reaction.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and alloys, Van Nostrand Reinhold Company 263, 358 (1981).
  2. P. Gordon, Principles of Phase Diagrams in Materials Science, McGraw- Hill Book Company, p. 107 (1968).
  3. R. E. Smallman, Modern Physical Metallurgy, 4th ed., Butterworths, 119, 130 (1985).
  4. C. Barrett and T. B. Massalski, Structure of Metals, 3rd ed. Pergamon Press, 275-305, 533 (1980).
  5. T. B. Massalski, J. L. Murray, L. H. Benett, and H. Baker, Binary Alloy Phase Diagrams, ASM. p. 843 (1986).
  6. M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tagaki, t. Saburi, S. Nenno, and H. Nishiyama, Trans. Japan Inst. Metals 10, 365 (1969).
  7. Marucco, A., Key Eng. Mater. 10, 77 (1990).
  8. B. Alexandreanu and G. S. Was, Corrosion 59, 705 (2003). https://doi.org/10.5006/1.3277600
  9. D. C. Crawford and Gary S. Was, Metal. Mater. Trans. 23, 1195 (1992). https://doi.org/10.1007/BF02665051
  10. F. Vaillant, J. Boursier, L. Legras, B. Yrieix, E. Lemarie, J. Champredonde, and C. Amzallag, A review of weldability and SCC behaviors of Ni-base Weld Metals in Laboratory PWR Environment, in 13rd Environmental Degradation of Materials in Nuclear Power Systems, Vancouver, Canada, Paper No. 0046 (2007).
  11. S. Kim and J. S. Kim, J. Kor. Ins. Met. and Mater 44, 473 (2006).
  12. S. S. Kim, I. H. Kook, and J. S. Kim, Mat. Sci. Eng. 279, 142 (2000). https://doi.org/10.1016/S0921-5093(99)00640-1
  13. S. S. Kim, J. S. Kim, S. S. Hwang, and H. P. Kim, Proceedings of Korean Nuclear Society 2008 Fall Meeting, p. 237 (2008).
  14. A. Marucco and B. Nath, J. of Mater. Sci. 23, 2107 (1988). https://doi.org/10.1007/BF01115776
  15. E. Lang, V. Lupinc, and A. Marucco, Mat. Sci. Eng. A114, 147 (1989).
  16. A. Marucco, Key Eng. Mater. 48, 77 (1990).
  17. A. Marucco, Mat. Sci. Eng. A189, 267 (1994).
  18. A. Marucco, Mat. Sci. Eng. A194, 225 (1995).