Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.6.462

Residual Stress Variation by Isothermal and Isochronal Annealing in Cold Rolled Alloy 600  

Kim, Sung Soo (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
Park, Duck Geun (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
Cheong, Young Moo (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
Publication Information
Korean Journal of Metals and Materials / v.49, no.6, 2011 , pp. 462-467 More about this Journal
Abstract
In order to understand why annealing at $480^{\circ}C$ for several hour prevents the initiation of PWSCC, the residual stress variation with isothermal annealing at $480^{\circ}C$ and isochronal annealing between 480 and $800^{\circ}C$ in cold rolled Alloy 600 was investigated by the XRD method. The isothermal annealing decreased residual stress slightly in the rolling direction but not in the transverse direction, whereas the isochronal annealing for two hours increased residual stress. It seemed that the decrease in residual stress by isothermal annealing was due to lattice contraction by an ordering reaction because the isothermal annealing increased hardness. The effects of the isochronal annealing could be interpreted as the influence of thermal expansion and a disordering reaction.
Keywords
residual stress; X-ray diffraction; Alloy 600; annealing; ordering reaction; PWSCC;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 D. A. Porter and K. E. Easterling, Phase Transformations in Metals and alloys, Van Nostrand Reinhold Company 263, 358 (1981).
2 P. Gordon, Principles of Phase Diagrams in Materials Science, McGraw- Hill Book Company, p. 107 (1968).
3 R. E. Smallman, Modern Physical Metallurgy, 4th ed., Butterworths, 119, 130 (1985).
4 C. Barrett and T. B. Massalski, Structure of Metals, 3rd ed. Pergamon Press, 275-305, 533 (1980).
5 T. B. Massalski, J. L. Murray, L. H. Benett, and H. Baker, Binary Alloy Phase Diagrams, ASM. p. 843 (1986).
6 M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tagaki, t. Saburi, S. Nenno, and H. Nishiyama, Trans. Japan Inst. Metals 10, 365 (1969).
7 Marucco, A., Key Eng. Mater. 10, 77 (1990).
8 B. Alexandreanu and G. S. Was, Corrosion 59, 705 (2003).   DOI   ScienceOn
9 D. C. Crawford and Gary S. Was, Metal. Mater. Trans. 23, 1195 (1992).   DOI   ScienceOn
10 F. Vaillant, J. Boursier, L. Legras, B. Yrieix, E. Lemarie, J. Champredonde, and C. Amzallag, A review of weldability and SCC behaviors of Ni-base Weld Metals in Laboratory PWR Environment, in 13rd Environmental Degradation of Materials in Nuclear Power Systems, Vancouver, Canada, Paper No. 0046 (2007).
11 S. Kim and J. S. Kim, J. Kor. Ins. Met. and Mater 44, 473 (2006).
12 S. S. Kim, I. H. Kook, and J. S. Kim, Mat. Sci. Eng. 279, 142 (2000).   DOI   ScienceOn
13 S. S. Kim, J. S. Kim, S. S. Hwang, and H. P. Kim, Proceedings of Korean Nuclear Society 2008 Fall Meeting, p. 237 (2008).
14 A. Marucco and B. Nath, J. of Mater. Sci. 23, 2107 (1988).   DOI   ScienceOn
15 E. Lang, V. Lupinc, and A. Marucco, Mat. Sci. Eng. A114, 147 (1989).
16 A. Marucco, Key Eng. Mater. 48, 77 (1990).
17 A. Marucco, Mat. Sci. Eng. A189, 267 (1994).
18 A. Marucco, Mat. Sci. Eng. A194, 225 (1995).