• Title/Summary/Keyword: Lattice Structures

Search Result 366, Processing Time 0.025 seconds

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

Hydrogenation Characteristics of the Matrix and the Second Phases of Ti-M-V Alloys (Ti-M-V 합금의 기지 및 제 2상의 수소화 특성)

  • Cho, Sung-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.2
    • /
    • pp.97-104
    • /
    • 2003
  • The structural transitions of the matrix and the second phases of $Ti_{1.0}Mn_{0.9}V_{1.1}$ and $Ti_{1.0}Cr_{1.5}V_{1.7}$ alloys upon hydrogenation have been investigated at 293K. The effect of hydrogen isotope on their crystal structures has been also discussed. The crystal structures, Phase abundance and lattice parameters of the hydrides were determined by the Rietveld method using X-ray diffraction data. At the experimental temperature, the $Ti_{1.0}Mn_{0.9}V_{1.1}$ alloy and $Ti_{1.0}Cr_{1.5}V_{1.7}$ alloy revealed different structural transition processes upon hydrogenation although the crystal structures of these two alloys are both BCC at room temperature. The second phases such as Ti-rich phase with $NiTi_2$ structure and $\alpha$-Ti with HCP structure absorbed hydrogen at relatively low hydrogen pressures and the phase abundance remained almost constant. This means that it is desirable to decrease the amount of the second phases as far as possible in order to increase the effective hydrogen storage capacities of the alloys. The crystal structures of corresponding isotope hydrides, the phase abundance and the lattice parameters did not depend on the kind of hydrogen isotope, but only on the hydrogen content.

Investigation of 3-D dynamic wind loads on lattice towers

  • Zou, Lianghao;Liang, Shuguo;Li, Q.S.;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.323-340
    • /
    • 2008
  • In this paper, the along-wind, across-wind as well as torsional dynamic wind loads on three kinds of lattice tower models are investigated using the base balance technique in a boundary layer wind tunnel. The models were specially designed, and their fundamental frequencies in the directions of the three principal axes are still in the frequency range of the spectra of wind loads on lattice towers. In order to clear contaminations to the spectra of wind loads induced by model resonance, the generalized force spectra of the first mode of the models in along-wind, across-wind and torsional directions were derived based on measured base moments of the models. The RMS generalized force coefficients are also obtained by removing the contributions of model resonance. Finally, the characteristics of the 3-D dynamic wind loads, especially those of the across-wind dynamic loads, on the three kinds of lattice towers are presented and discussed.

Study on dynamic behavior of a new type of two-way single layer lattice dome with nodal eccentricity

  • Satria, Eka;Kato, Shiro;Nakazawa, Shoji;Kakuda, Daisuke
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.511-530
    • /
    • 2008
  • This paper discusses a feasibility of a new type of two-way system for single layer lattice domes with nodal eccentricity by investigating the dynamic behavior under earthquake motions. The proposed dome is composed of two main arches, intersecting each other with T-joint struts to provide space for tensioning membranes. The main purposes of this study are to calculate the nonlinear dynamic response under severe earthquake motions and to see the possibility of using this new type of two-way system for single layer lattice domes against earthquake motions. The results show that the main arches remain elastic except yielding of the joints of strut members that can be used to absorb some amount of strain energy at strong earthquake motion. Consequently, deformation of the main arches can be reduced and any heavy damages on the main arches can be minimized. A kind of damage-control characteristic appeared in this system may be utilized against severe earthquake motions, showing a possibility of designing a new type of single layer lattice dome.

Analysis of Nonlinear Torsional Behavior for High Strength Reinforced Concrete Structure Using 3-Dimensional Lattice Model (3차원 래티스 모델을 사용한 고강도 철근콘크리트 구조물의 비선형 비틀림 해석)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Because of earthquakes that have recently struck, seismic design criteria that considered performance of structure were included in the design concepts. Thus, a simple analysis tool is needed to predict the strength and ductility of RC structures. In this study, three-dimensional lattice model was developed to expand the two-dimensional lattice model. Torsional analysis of the structure was done to evaluate the developed three-dimensional lattice model. Lattice model was evaluated by comparing analytical results with experimental results. Lattice element size was evaluated using the results of analysis. Torsional analysis results, using three-dimensional lattice model, show that the results are relatively consistent with the experimental values.

The Magnetism and Electronic Structures of Ru Monolayer with Square Lattice (사각형구조를 갖는 Ru 단층의 자성과 전자구조)

  • 조이현;김인기;이재일;장영록;박인호;최성을;권명회
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.127-130
    • /
    • 1999
  • The magnetism and electronic structure of Ru monolayer with square lattice is investigated using the FLAPW band method. The dependence of total energies on the lattice constant was calculated for three magnetic states, i.e.,para-,ferro-, and antiferromagnetic ones. It was found that there is no energy difference between para-and antiferromagnetic states for all the lattice constant. The possibility of antiferromagnetism in square Ru monolayer is thus excluded. The ferromagnetic state is most stable for the lattice constants greater than 7.30 a.u. The energy minimum is found at the lattice constant of 6.53 a.u. Where it is paramagenetic. It is calculated that the magenetic moment is 2.49 ${\MU}_B$ at 7.72 a.u., which is close to the lattice constant of Ag. The magnetic moment is almost saturated to be ${\MU}_B$ at the lattice constant of 7.86 a.u.

  • PDF

Vest Design Development of Fashion Culture Products based on Korean Style - Application of Traditional Lattice Pattern of Doors - (한국적 디자인을 기본으로 한 패션문화상품 조끼디자인 개발 - 전통 창살문양 응용 -)

  • Choi, Eunjoo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.412-419
    • /
    • 2019
  • This study is to help maintain the identity of traditional Korean culture and develop fashion culture products by applying images and composition forms of traditional lattice patterns for vest designs. Lattice can be distinguished as a shape created through intersecting vertical and horizontal lines, in the form of oblique lines in vertical and horizontal structures, and in the form of an oblique line. Lattice patterns represent the overall unity and order as well as the beauty of small spaces created by simple lines. Traditional lattice patterns of the Joseon Dynasty were examined theoretically through the literature. Based on theoretical grounds, there is study illustrates vest designs using Adobe Illustrator CS6 as well as works on a 3D virtual costume using CLO Trial 4.2, a 3D virtual dressing system of CLO Virtual Fashion. This study developed an easy to wear vest design categorized as clothes for both men and women. The geometric formality of the lattice pattern has been applied to fashion culture products. In this study, the design was developed focusing on lattice, kotsal (flower pattern), sosulbitsal (diagonal), sotdaesal, tisal (horizontal & vertical). This study can be used as basic data in the domestic fashion cultural product market that can help maintain the originality of Korean culture in the global era that also assists in the successful promotion of Korean culture and traditions.

Lattice Structure of Generalized Intuitionistic Fuzzy Soft Sets

  • Park, Jin Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.201-208
    • /
    • 2014
  • Park et al. introduced the concept of generalized intuitionistic fuzzy soft sets, which can be seen as an effective mathematical tool to deal with uncertainties. In this paper, we introduce new operations such as restricted union and restricted intersection and study their basic properties, and deal with the algebraic structure of generalized intuitionistic fuzzy soft sets. The lattice structures of generalized intuitionistic fuzzy soft sets are constructed.

Efficient Interleaving Schemes of Volume Holographic memory

  • Lee, Byoung-Ho;Han, Seung-Hoon;Kim, Min-Seung;Yang, Byung-Choon
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.172-179
    • /
    • 2002
  • Like the conventional digital storage systems, volume holographic memory can be deteriorated by burst errors due to its high-density storage characteristics. These burst errors are used byoptical defects such as scratches, dust particles, etc. and are two-dimensional in a data page. To deal with these errors, we introduce some concepts for describing them and propose efficient two- dimensional interleaving schemes. The schemes are two-dimensional lattices of an error-correction code word and have equilateral triangular and square structures. Using these structures, we can minimize the number of code words that are interleaved and improve the efficiency of the system. For large size burst errors, the efficient interleaving structure is an equilateral triangular lattice. However, for some small size burst errors, it is reduced to a square lattice.

An Estimation of Buckling-Strength of Braced Rectangular Latticed Domes (브레이스로 보강된 사각형 래티스돔의 좌굴내력 평가)

  • Hwang, Young-Min;Suk, Chang-Mok;Park, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.69-76
    • /
    • 2003
  • In case of rectangular latticed pattern which shearing rigidity is very small, it has a concern to drop Buckling-strength considerably by external force. So, by means of system to increase buckling-strength, there is a method of construction that lattice of dome is reinforced by braced member. In a case like this, shearing rigidity of braced member increase buckling-strength of the whole of structure and can be designed economically from the viewpoint of practice. Therefore, this paper is aimed at investigating how much does rigidity of braced member united with latticed member bearing principal stress of dome increase buckling-strength of the whole of structure. the subject of study is rectangular latticed domes that are a set of 2-way lattice dome which grid is simple and number of member gathering at junction is small. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems.

  • PDF