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Like the conventional digital storage systems, volume holographic memory can be deteriorated
by burst errors due to its high-density storage characteristics. These burst errors are caused by
optical defects such as scratches, dust particles, etc. and are two-dimensional in a data page. To
deal with these errors, we introduce some concepts for describing them and propose efficient two-
dimensional interleaving schemes. The schemes are two-dimensional lattices of an error-correction
code word and have equilateral triangular and square structures. Using these structures, we can
minimize the number of code words that are interleaved and improve the efficiency of the system.
For large size burst errors, the efficient interleaving structure is an equilateral triangular lattice.
However, for some small size burst errors, it is reduced to a square lattice.

OCIS codes : 090.7330, 090.4220.

I. INTRODUCTION

A burst noise is a common problem in many of the
digital communication media. This noise produces a
burst error, a cluster of consecutive errors of symbols.
The symbol is an error-correction unit of an error-
correction code (ECC) and is composed of one to sev-
eral bits according to the ECC structure. Each ECC
word is composed of several number of these symbols
[1]. In volume holographic memory (VHM), the burst
error becomes very troublesome because digital data
are stored and processed with high density. In general,
interleaving is a way of solving burst errors by permut-
ing symbols of several ECC words. The interleaving
for VHM has to consider its two-dimensional charac-
teristics, which originate from the fact that data are
processed using a two-dimensional array of bits, i.e.,
a data page. In a data page, a burst error also occurs
over some two dimensional area in general. Several in-
terleaving techniques to deal with this problem have
been proposed.

These techniques are categorized as inter-page par-
allel one-dimensional interleaving and intra-page two-
dimensional interleaving. The inter-page parallel one-
dimensional interleaving is used for inter-page burst
errors to deal with burst noises which occur over sev-
eral data pages [2,3]. It views each bit in a data page
as one communication channel and many data streams
(i.e., streams of ECCs) are processed in parallel using

a collection of these channels, the data page. There-
fore, each code word has a certain fixed location in a
data page and its symbols are spread and interleaved
over several data pages. On the contrary, for burst
errors within a data page, we can make use of intra-
page two-dimensional interleaving. Let it be called
two-dimensional interleaving in the following. Given
the number of ECCs and the size of an interleav-
ing area, this interleaving technique spreads symbols
of each code word in a two-dimensional grid plane.
Almeida et al. [4] made two-dimensional interleaving
which maximizes the minimum Euclidean distance be-
tween the spread code word symbols by introducing
the set-partitioning concept. Blaum et al. [5] proposed
minimizing the number of interleaved code words in
multi-dimensional interleaving, and hence improving
the interleaving efficiency. By reducing the number
of code words interleaved (i.e., interleaving degree),
the code word length can be increased so that overall
error performance is improved. They considered two-
dimensional interleaving minimizing the interleaving
degree to overcome two-dimensional ¢ consecutive (t-
interleaved) errors. What we propose in this paper is
a scheme of an efficient two-dimensional interleaving
according to the burst error characteristic in the data
page. The characteristic we consider here is that there
exists a maximum diameter for the burst errors to deal
with. Blaum et al. minimized the interleaving degree
considering the two-dimensional size of the burst error
(t-interleaved) [5]. In this paper, we focus on minimiz-
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ing the number of the interleaved code words for the
maximum diameter of burst errors. Here, we measure
the diameter of the burst error and other distances
using the Euclidean metric (d2(z1, y1; %2, ¥2) = [(z1 —
y1)2+(z2—92)%Y2, 1,91, Z2,y2 € R). This is mean-
ingful when burst errors in the data page have random
shapes so that the two-dimensional sizes are not fixed,
but have a certain limit on their diameters with ran-
dom orientation. If we apply the two-dimensional in-
terleaving of Blaum et al.’s for this case, we can see
that there occur some redundant code words (addi-
tional interleaving degree) since the method uses the
metric di(z1,y1; Z2, ¥2) = |21 — y1| + |z2 — y2| to mea-
sure inter-symbol distance of each code word. We note
that radial spreading structure of two-dimensional in-
terleaving was proposed when the optical system has
some misalignment with the threshold detection [6].
For the simplification of the problem, we excluded the
position dependence of the random error rate due to
the misalignment.

We consider VHM as a channel of random burst era-
sure process, where two-dimensicnal burst errors oc-
cur at random positions, with random shapes in a data
page. Here, it is assumed that for a given VHM sys-
tem, the mechanism of burst errors can be understood
and exploited to determine the maximum diameter of
burst errors [1]. Then we introduce some parame-
ters to describe these burst errors, and using these
parameters we propose efficient two-dimensional inter-
leaving schemes of lattice structure. These interleav-
ing schemes minimize and equalize the Euclidean dis-
tances between neighboring lattice points (i.e., sym-
bols of one code word) so that the number of inter-
leaved code words is minimized when the maximum
diameter of burst error is given.

II. TWO-DIMENSIONAL BURST ERROR
1. Two-dimensional burst noise

Generally, the 4f optical system is used in the
VHM. (Fig. 1) A data page is displayed on a spatial
light modulator (SLM) at the input plane of the 4f
system. The information of the data page is carried by
an object beam from a laser source and recorded in the
holographic material by use of interference with a ref-
erence beam from the same laser. The recording ma-
terial is located at the Fourier plane of a lens (Fourier
hologram) or some distance off the Fourier plane (Fres-
nel hologram) [7]. When retrieving the data, the same
reference beam used in the recording procedure illu-
minates the holographic material and the regenerated
data page information is imaged onto the CCD at the
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FIG. 1. The 4f optical system of VHM. Storage mate-
rial has some thickness and there exists a boundary be-
tween the material and air, which is out of the Fourier
plane.

output plane of the 4f system.

Because the VHM uses three-dimensional gratings
with sufficiently large sizes (much larger than the laser
beam’s wavelength \) to increase its storage density,
the holographic storage material should have some
three-dimensional volume. Especially, along the longi-
tudinal direction of the 4f system, a thickness (A) of
several millimeters is required for the storage material
[8]. As a result, for both the Fourier hologram and the
Fresnel hologram, there exist boundary planes, which
are out of the Fourier plane. The boundary planes
might be contaminated by dusts or defects.

Fig. 2 shows CCD-detected image with some burst
noises at the output plane of the 4f system. These

FIG. 2. Burst noise characteristics. (a) Burst noises
due to some dust particles at the off-Fourier plane (the
white-circled area, for example). (b) Burst noise caused
by a contamination source (inky spot) at the off-Fourier
plane (c) Burst noise translation when the contamination
source translated horizontally. (d) Burst noise enlarge-
ment when the contamination source moved toward the
Fourier plane.
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burst noises are caused by some contamination a few
millimeters behind the Fourier plane. The numeri-
cal aperture of SLM used in the experiment is about
0.1. In Fig. 2 (a), the contamination source is several
minute dust particles. Here, we can see that the over-
all image is somewhat blurred and find several two-
dimensional burst noise areas where noise occurs in
(1,0) intensity data. To examine relationships further
between the contamination source and burst noise,
we pointed a small inky spot (diameter 0.5 mm) on
a slide glass a few millimeters ( 5 mm) behind the
Fourier plane. Then the burst noise occurred quite
apparently as in Fig. 2 (b). When the inky spot was
translated horizontally in the transverse plane, there
occurred corresponding burst noise translation (Fig. 2
(c)). And when the inky spot was moved closer to the
Fourier plane in the longitudinal direction, the burst
noise was enlarged (Fig. 2 (d)). In both cases, we note
that the shape of the burst noise was not changed. It
is easy to interpret these results using the ray optical
tracing of each data bit. Each ray from the data bit
propagates in the optical system and when it meets
a contamination source, its propagation is disturbed.
Therefore, we can conclude that the shape, size, and
location of the contamination source determine the
ray bundle of the noise data bits and the burst noise
characteristics in the output plane. There are other
sources of burst noise in VHM like clusters of dead
pixels of SLM or CCD. In these cases, it is also pos-
sible to understand the mechanism and statistics of
burst noises. As a result, it is appropriate to assume
that if a VHM system is designed, we can find burst
noise characteristics of the system and exploit them
to construct a suitable interleaving structure.

2. Two-dimensional burst error and symbolic
radius

In the above, we saw that burst noise makes it dif-
ficult to decide 1’s and 0’s in the retrieving process.
To handle this noise more strictly, we introduce the
concept of burst erasure. An erasure is a state of
a transmitted binary data in a digital communica-
tion channel that cannot be distinguished as either
1’s or 0’s. Using this concept in our VHM case, we
denote the damaged bit of which the information is
estimated to be corrupted as an erased bit. When the
retrieved image of VHM has a burst noise, there are
also some erased bits in the burst noise, whichever de-
tection method is used. For example, if the threshold
detection scheme is applied to the retrieving process,
these erased bits may have intensities in the range of
the overlapped area of distribution functions of 1’s and
0’s [9]. Similarly, when the modulation code is used
in the detection, bits for which intensity information
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FIG. 3. (a) Burst erasure (cluster of erased bits) causes
burst error of symbols embracing it. Each symbol is com-
posed of 3x3 bits. {(b) A burst erasure is characterized by
the longest length across it in unit of symbols (symbolic
radius, bold arrow).

is changed can be the erased bits [10]. We call the
cluster of these erased bits a burst erasure. (Fig. 3)

In Fig. 3, several symbols of ECC are tiled in a ma-
trix form. Each symbol is composed of 3 x 3 bits in this
example. In ECC, a symbol is a unit of error correc-
tion and generally is composed of one to several bits.
Even one bit error might produce error of the symbol
that contains the error bit. Therefore, in Fig. 3, we
can distinguish a cluster of symbol errors containing
the burst erasure area. This is the two-dimensional
burst error of symbols.

We can find some relations between burst erasure
and burst error. To deal with these relations, we in-
troduce a parameter for the burst erasure. It is pos-
sible to draw a line with the longest length across the
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burst erasure. Then we can get the numerical value of
the length of this line in a symbol unit. We call this
length the symbolic radius R. In Fig. 3 (b), the sym-
bolic radius is about 4.3 symbols in Euclidean metric
(i.e. v3.32+2.72). Here we can have an assump-
tion that for a given system and given contamination
source characteristics, there exists a maximum sym-
bolic radius of burst erasures. In the following, we
make interleaving strategies for the burst error prob-
lem using this maximum symbolic radius.

III. INTERLEAVING SCHEMES
1. Extended circle of burst erasure

In the conventional one-dimensional interleaving,
an important parameter is the maximum burst error
length of a system, i.e., B symbols. In this case, B
code words are rearranged so that symbols of each
error-correction code word are spaced by B symbol
intervals. By doing this, we can change the B consec-
utive symbol errors (i.e., burst error) into one symbol
error for each of the interleaved B code words. Be-
cause each of these B code words has only one dam-
aged symbol by a burst erasure of length B, the burst
error problem is transformed into one symbol error
problem for each code word. As a result, B symbols
from each code word form the unit of permutation
[1,6]. However, in the two-dimensional case, it is re-
quired to consider the size, shape, and ordering of the
permutation units in relation with the burst error size,
i.e. symbolic radius. To deal with these permutation
units in the two-dimensional domain, we make use of
some terminologies in the solid-state crystal lattice.

Fig. 4 shows relations between the area of possi-
ble burst erasure and the symbolic radius by taking
one symbol as an origin (numbered ‘1’ in Fig. 4). By
translating and drawing a circle with a line of sym-
bolic radius in contact with the origin symbol, we can
draw an extended circle of possible burst erasure. If
there is any other symbol from the same code word
of the origin symbol within or at the boundary of the
extended circle, then it becomes possible that more
than one symbol in the code word are corrupted by a
burst erasure. In this case, there is no advantage of
the interleaving. Therefore, in order to obtain an ef-
fective interleaving, the origin symbol of the extended
circle must be surrounded by symbols from other code
words within the boundary of the extended circle. As
a result, the extended circle and its boundary need to
be filled with symbols from different code words (dif-
ferent numbers in Fig. 4). Other symbols of the code
word that contains the origin symbol must be located
out of the extended circle so that there is no overlap-
ping with the extended circle. For all the symbols
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FIG. 4. Extended circle of burst erasures when symbolic
radius is 4. The extended circle and its vicinities mean the
area of possible burst erasure. The origin symbol (num-
bered ‘1’) is surrounded by symbols from other code words
within the boundary of the circle (numbered ‘2'-25).

in a data page, we can repeat this procedure two-
dimensionally. For each of them, we can draw an
extended circle and fill the inner area by symbols
from different code words and then position other
symbols of the same code word out of the circle.
Hence the symbol positioning has a periodicity in the
two-dimensional domain and it will become a two-
dimensional lattice structure with some lattice con-
stants and primitive unit cells [11]. In the follow-
ing, we will deal with the characteristics of these two-
dimensional lattices in relation with the maximum
symbolic radius.

2. Equilateral triangular lattice

Generally, an ECC is characterized by (n,%,1),
where n is the code word length measured by symbols,
k is the message symbol length, and ¢ is the error cor-
rection capability. The error correction capability is
increased with the increase of the redundancy n — k.
However, although we can improve the error correc-
tion capability by introducing more redundancy, this
introduces a problem in that the storage efficiency be-
comes worse. As n — k is increased, the ratio of the
original message k over the whole code word (i.e. code
rate k/n) is reduced. Therefore, there exists a tradeoff
between the error correction capability and the stor-
age efficiency (code rate).

When the required error correction capability ¢ is
fixed in relation with n — k, the code rate k/n can be
increased by increasing the code word length n. And
if the code rate is fixed, by increasing the code word
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length n, we can improve the error correction capabil-
ity of the ECC and the reliability of the system. In
both cases, we can have an improvement of the sys-
tem performance with the increase of the code word
length. For the case of the two-dimensional interleav-
ing in VHM, we can increase the code word length by
reducing the number of code words being interleaved
within a given interleaving area. The relation is

N, x N, = Sn, )

where a rectangular array of Ny x ¥y symbols is the
interleaving area. It is composed of S interleaved code
words of which the length is n symbols. We can see
that as the number of the interleaved code words S is
reduced, the inter-symbol distances of each code word
become shortened and the code word length can be
increased.

Considering the burst error problems, there arises
one condition that must be satisfied. As we have found
in the above, the condition is that symbols of each
code word should be positioned so that any two of
them will not be covered simultaneously by one ex-
tended circle of the maximum symbolic radius of the
burst erasures. As in Fig. 5 (a), we can position three
symbols of a code word most closely in an equilateral
triangular form satisfying this requirement. At first,
by taking an origin with a given symbol A, draw an
extended circle and position symbol B in the outside
of the circle. Then using symbol B as an origin, draw
another extended circle and locate the third symbol C
outside of both circles. As a result, we obtain a trian-
gular lattice structure of symbols. In this lattice struc-
ture, there exist three lattice constants, AB, BC,CA.
When the relative positions of these three symbols are
chosen so that the lattice constants are equalized with
smallest lengths, the interleaving becomes most effi-
cient, i.e., the least number of code words are inter-
leaved as the following.

Fig. 5(b) shows a construction of the equilateral
triangular lattice structure, i.e., the extension of Fig.
5(a) over the two-dimensional structure. For each
symbol of a code word, we can repeat the above
spreading procedure. Here, symbols of certain code
word indicated as shaded square are dispersed. We
note that there can exist only three lattice constants.
Borrowing the concept of crystal lattice in solid-state
physics, we can define a two-dimensional primitive
unit cell, which is the smallest unit area that can con-
struct the whole structure by translating it without
any overlapping. Note that the primitive unit cell is
not triangular and it is not unique. In Fig. 5(b),
we can find with ease that the primitive unit cell can
be a diamond of ABCD. Also, we can find another
primitive unit cell with different shape of a rectangu-
lar array AD’. The area of this primitive unit cell
becomes the number of the interleaved code words S.

C

FIG. 5. Construction of the equilateral triangular lat-
tice interleaving (a) Equilateral triangular structure pro-
vides the most efficient interleaving lattice. (b) The prim-
itive unit cells of the lattice. (c) The relationship between
primitive cells of different shape.

The infimum (the greatest lower bound) of S is

V3

Sing = 5 (R+ 1) (2)

when all the lattice constants are equalized and min-
imized to the length R + 1 as an ideal case. Here, 1 is
due to the length of a symbol itself. The infimum of
this case is obtained as an area of the diamond com-
posed of two equilateral triangles.

When the y-directional transition Y between B and
D is a multiple of the y-directional transition between
A and B like
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Y = ad, (3)

where o and 4 are integers, ABCD can be reor-
ganized as AD’ with some division and translations
[11]. Fig. 5(c) shows the reorganizing diamond prim-
itive unit cell into the rectangular unit cell. There
exists correspondence between the regions I, II, III,
IV, V of the diamond ABCD and those of the rect-
angle AD’. The rectangle AD’ can be obtained from
the diamond ABCD with DA translation of region I,
1E3_g_i§)n 1T itself, the AB translation of region 111, the
CD' translation of region IV, and the DD’ translation
of region V. Here, the definition of XY transition of
region I is parallel movement of region I with length
IXY| and direction XY /|XY|. This rectangle (AD')
of symbols also constitutes the whole lattice structure
with repeated translations. It is another version of the
primitive unit cell. We can know that these primitive
unit cells have size S of 15 symbols.

Now we can conclude a scheme of an efficient two-
dimensional interleaving. When the system charac-
teristic of the maximum symbolic radius R is deter-
mined, it is possible to construct the equilateral trian-
gular lattice structure. Then with some division and
translations, the rectangular primitive unit cell and
its size S are acquired. We can allocate different code
words to different positions in this unit cell and then
symbols of each code word are always located at their
own positions over all the primitive unit cells. As a
result, symbols of S code words are interleaved two-
dimensionally in a data page with an efficient equilat-
eral triangular lattice structure.

From Fig. 5(b), the properties of the primitive unit
cell are explained using the z-directional transition X,
y-directional transition § between A and B, and the
z-directional transition v, y-directional transition Y
between B and D. The size S of a primitive unit cell
is derived from the rectangular primitive unit cell AD’
and Eq. (3) as

S=(@aX -¥)0=XY —~¢ (4)

We can see that § symbols in the y-direction are
lined z-directionally by aX — v times.

For the last, the size of the data page or an interleav-
ing area is determined as follows. The z-directional
length N, of an interleaving area measured by symbols
must be chosen as integer multiples of z-directional
width aX — v of the rectangular primitive cell (AD’).
Likewise the y-directional length Ny, should be some
integer multiples of y-directional height § of the rect-
angular primitive cell (Fig. 6). When the rectangular
primitive unit cell is positioned at the boundary of
the interleaving area, the outer part of the unit cell
should be cut and translated to the opposite region of
the interleaving area using modulo N, operation.

F— % [ T

FIG. 6. The relation of an interleaving area and rect-
angular primitive unit cells (a) One primitive unit cell lies
in horizontal direction. (b) T'wo primitive unit cells lie in
horizontal direction.

Fig. 6(a) shows a case when only one rectangular
primitive unit cell lies in z-direction and Fig. 6(b)
shows another case when two unit cells lie in z-
direction. More multiple rectangular unit cells can
also lie along the z-direction.

3. Square lattice

There exist certain ranges of the maximum sym-
bolic radius R, where the above equilateral triangular
lattice is not the most efficient interleaving structure.
In Fig. 7(a), we can see that the extended circle of
burst erasure and its boundary region form a square
of the possible burst error. It happens when the pos-
sible burst erasure covers the origin symbol and the
outermost corner symbol of the square simultaneously.
The ranges of a symbolic radius for this case are deter-
mined as (v/2,2) and (2v/2,3) using geometrical cal-
culations. For example, Fig. 7(b) shows one possible
case corresponding to (21/2,3). In this case, the 4 x 4
square symbol array is influenced by the extended cir-
cle of burst erasure. We solved the problem assuming
that the corner symbol is erased when any part of
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FIG. 7. Square lattice and its square primitive unit cell.
(a) The square unit cell is repeated in the two-dimensional
interleaving area. (b) The square lattice case for the sym-
bolic radius of (2v/2,3).

it is covered by the symbolic radius. And in these
ranges, the most efficient lattices are square lattices
with lattice constant L given by

L=[R]+1, (5)

where [R] means the smallest integer no less than R.
The primitive unit cell then becomes square of L x L
symbols of which the size is

S =([R]+1)% (6)

In these cases, to make an equilateral triangular lat-
tice interleaving has no advantage in efficiency.

IV. CONCLUSION

In VHM, due to the two-dimensional characteris-
tics of the data page, the burst error occurs two-
dimensionally by some optical defects. Unlike the one-
dimensional burst errors in the conventional digital
data communications, in this case, the burst error has
some shapes and sizes. In order to deal with them,
we have introduced the notions of burst erasure and
symbolic radius. When a burst noise occurs in a data
page, the cluster of distorted bits (burst erasure) has
a maximum diameter across it. We call this maximum
diameter the symbolic radius of burst erasure. In rela-
tion with the principal contamination source of burst
error and the designed optical system of VHM, it has
been assumed that we can predict or decide the max-
imum symbolic radius of burst erasures to overcome.
Then by using this maximum symbolic radius, we con-
structed the two-dimensional interleaving schemes ex-
cluding the effect of burst error shapes.

When the maximum symbolic radius is given, for
any symbol in a data page, we can draw an extended
circle with the maximum symbolic radius as its radius
taking the symbol as a center of the circle. Then any
other symbols of the same code word of the centered
symbol should not be located within or at the bound-
ary of the extended circle. By repeating this procedure
for all the symbols, we can position symbols of each
code word two-dimensionally with some periodicities.
These periodicities form the two-dimensional lattice
constants of the code word symbols.

The lattice constants of the two-dimensional lattices
become the inter-symbol-space of the two-dimensional
interleaving and the size of the primitive unit cell be-
comes the number of interleaved code words. When
the lattice forms an equilateral triangular lattice struc-
ture, the interleaving efficiency is highest. How-
ever, for small size burst erasures of symbolic radius
(\/5, 2), (2\/5, 3), the interleaving lattices are reduced
to square lattices of lattice constants 3 and 4 in each.
Here, the numerical values are calculated assuming
that the corner symbol is erased by only small frac-
tion coverage of a symbolic radius. For both cases,
we can have an insight about the two-dimensional in-
terleaving of VHM by use of the rectangular primi-
tive unit cell and its tiling with some two-dimensional
translations.

In our research, all the symbols that we used have
square shapes. To make problems simpler, we have
only considered symbols composed of square number
of bits. However, for more practical cases, it is worthy
to examine non-square shape symbols as interleaving
units. In this case, we can expect some changes in
the range of the maximum symbolic radius where the
lattice becomes a square or even a rectangular form.
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