DOI QR코드

DOI QR Code

Efficient Interleaving Schemes of Volume Holographic memory

  • Lee, Byoung-Ho (School of Electrical Engineering, Seoul National University) ;
  • Han, Seung-Hoon (School of Electrical Engineering, Seoul National University) ;
  • Kim, Min-Seung (School of Electrical Engineering, Seoul National University) ;
  • Yang, Byung-Choon (School of Electrical Engineering, Seoul National University)
  • Received : 2002.11.14
  • Published : 2002.12.01

Abstract

Like the conventional digital storage systems, volume holographic memory can be deteriorated by burst errors due to its high-density storage characteristics. These burst errors are used byoptical defects such as scratches, dust particles, etc. and are two-dimensional in a data page. To deal with these errors, we introduce some concepts for describing them and propose efficient two- dimensional interleaving schemes. The schemes are two-dimensional lattices of an error-correction code word and have equilateral triangular and square structures. Using these structures, we can minimize the number of code words that are interleaved and improve the efficiency of the system. For large size burst errors, the efficient interleaving structure is an equilateral triangular lattice. However, for some small size burst errors, it is reduced to a square lattice.

Keywords

References

  1. G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications, (New York:Plenum Press, 1981).
  2. M. A. Neifeld and J. D. Hayes, Appl. Opt. 34, 8183 (1995). https://doi.org/10.1364/AO.34.008183
  3. S. Jeon, S. Han, B. Yang, K. M. Byun, and B. Lee, Jap. J. Appl. Phys. 40, 1741 (2001). https://doi.org/10.1143/JJAP.40.1741
  4. C. de Almeida and R. Palazzo Jr., Electron. Lett. 32, 538 (1996). https://doi.org/10.1049/el:19960340
  5. M. Blaum, J. Bruck, and A. Vardy, IEEE Trans. Inform. Theory 44, 730 (1998). https://doi.org/10.1109/18.661516
  6. W. C. Chou and M. A. Neifeld, Appl. Opt. 37, 6951 (1998). https://doi.org/10.1364/AO.37.006951
  7. H. -Y. S. Li and D. Psaltis, J. Opt. Soc. Amer. A. 12, 1902 (1995) https://doi.org/10.1364/JOSAA.12.001902
  8. H. -Y. S. Li and D. Psaltis, Appl. Opt. 33, 3764 (1994). https://doi.org/10.1364/AO.33.003764
  9. X. Yi, P. Yeh, and C. Gu, Opt. Lett. 19, 1580 (1994). https://doi.org/10.1364/OL.19.001580
  10. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, Opt. Lett. 22, 639 (1997). https://doi.org/10.1364/OL.22.000639
  11. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Saunders College Publishing, 1976).