• Title/Summary/Keyword: Lattice Constant

Search Result 409, Processing Time 0.028 seconds

Strain-induced enhancement of thermal stability of Ag metallization with Ni/Ag multi-layer structure

  • Son, Jun-Ho;Song, Yang-Hui;Kim, Beom-Jun;Lee, Jong-Ram
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.157-157
    • /
    • 2010
  • Vertical-structure light-emitting diodes (V-LEDs) by laser lift-off (LLO) have been exploited for high-efficiency GaN-based LEDs of solid-state lightings. In V-LEDs, emitted light from active regions is reflected-up from reflective ohmic contacts on p-GaN. Therefore, silver (Ag) is very suitable for reflective contacts due to its high reflectance (>95%) and surface plasmon coupling to visible light emissions. In addition, low contact resistivity has been obtained from Ag-based ohmic contacts annealed in oxygen ambient. However, annealing in oxygen ambient causes Ag to be oxidized and/or agglomerated, leading to degradation in both electrical and optical properties. Therefore, preventing Ag from oxidation and/or agglomeration is a key aspect for high-performance V-LEDs. In this work, we demonstrate the enhanced thermal stability of Ag-based Ohmic contact to p-GaN by reducing the thermal compressive stress. The thermal compressive stress due to the large difference in CTE between GaN ($5.6{\times}10^{-6}/^{\circ}C$) and Ag ($18.9{\times}10^{-6}/^{\circ}C$) accelerate the diffusion of Ag atoms, leading to Ag agglomeration. Therefore, by increasing the additional residual tensile stress in Ag film, the thermal compressive stress could be reduced, resulting in the enhancement of Ag agglomeration resistance. We employ the thin Ni layer in Ag film to form Ni/Ag mutli-layer structure, because the lattice constant of NiO ($4.176\;{\AA}$ is larger than that of Ag ($4.086\;{\AA}$). High-resolution symmetric and asymmetric X-ray diffraction was used to measure the in-plane strain of Ag films. Due to the expansion of lattice constant by oxidation of Ni into NiO layer, Ag layer in Ni/Ag multi-layer structure was tensilely strained after annealing. Based on experimental results, it could be concluded that the reduction of thermal compressive stress by additional tensile stress in Ag film plays a critical role to enhance the thermal stability of Ag-based Ohmic contact to p-GaN.

  • PDF

Structural, Magnetic, and Optical Studies on Normal to Inverse Spinel Phase Transition in FexCo3-xO4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Ahn, Geun-Young;Kim, Chul-Sung;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.96-99
    • /
    • 2005
  • Phase transition from normal- to inverse-spinel structure has been observed for $Fe_xCo_{3-x}O_4$ thin films as the Fe composition (x) increases from 0 to 2. The samples were fabricated as thin films by sol-gel method on Si(100) substrates. X-ray diffraction measurements revealed a coexistence of two phases, normal and inverse spinel, for $0.76{\le}x{\le}0.93$. The normal-spinel phase is dominant for $x{\le}0.55$ while the inverse-spinel phase for $x{\ge}l.22$. The cubic lattice constant of the inverse-spinel phase is larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. X-ray photoelectron spectroscopy measurements revealed that both $Fe^{2+}$ and $Fe^{3+}$ ions exist with similar strength in the x=0.93 sample. Conversion electron $M\ddot{o}ssbauer$ spectra measured on the same sample showed that $Fe^{2+}$ ions prefer the octahedral $Co^{3+}$ sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates the dominance of the normal spinel phase for low x in which $Fe^{3+}$ ions tend to substitute the octahedral sites.

Properties of $CuInS_2$ thin film Solar Cell Fabricated by Electron beam Evaporator (전자빔 증착기로 제작한 태양전지용 $CuInS_2$ 박막특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Joung-Yun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.379-380
    • /
    • 2005
  • Single phase $CuInS_2$ thin film with a highest diffraction peak (112) at a diffraction angle ($2\Theta$) of $27.7^{\circ}$ was well made by SEL method at annealing temperature of $250^{\circ}C$ and annealing hour of 60 min in vacuum of $10^{-3}$ Torr or in S ambience for an hour. And the peak of diffraction intensity at miller index (112) of $CuInS_2$ thin film annealed in S ambience was shown a little higher about 11 % than in only vacuum. Single phase $CuInS_2$ thin films were appeared from 0.85 to 1.26 of Cu/In composition ratio and sulfur composition ratios of $CuInS_2$ thin films fabricated in S ambience were all over 50 atom%. Also when $CuInS_2$ composition ratio was 1.03, $CuInS_2$ thin film with chalcopyrite structure had the highest XRD peak (112). The largest lattice constant of a and grain size of $CuInS_2$ thin film in S ambience was 5.63 ${\AA}$ and 1.2 ${\mu}m$ respectively. And the films in S ambience were all p-conduction type with resistivities of around $10^{-1}{\Omega}cm$.

  • PDF

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Zhao, Xiaoli;Li, Chuanwei;Han, Lizhan;Gu, Jianfeng
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1193-1201
    • /
    • 2018
  • Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich $M_{23}C_6$, and most of them are V-rich MC, only very few are Cr-rich $M_{23}C_6$. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

Microwave Dielectric constant characteristics or (Al,Mg,Ta)O2 Solid Solutions with Crystal Structure and Ionic Polarizability (결정구조와 이온 분극률에 따른 (Al,Mg,Ta)O2고용체의 마이크로파 유전상수 특성)

  • 최지원;하종윤;안병국;박용욱;윤석진;김현재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.108-112
    • /
    • 2003
  • The calculated and measured dielectric constants of (1-x)(A $l_{1}$2/ T $a_{1}$2/) $O_2$-x(M $g_{1}$3/ T $a_{2}$3/) $O_2$ (0$\leq$x$\leq$1.0) solid solutions were investigated by variations of ionic polarizability and crystal structure. (A $l_{1}$2/ T $a_{1}$2/) $O_2$ and (M $g_{1}$3/ T $a_{2}$3/) $O_2$ were orthorhombic and tetragonal trirutile structure, respectively. When (A $l_{1}$2/ T $a_{1}$2/) $O_2$ was substituted by (M $g_{1}$3/ T $a_{2}$3/) $O_2$, the phase transformed to tetragonal structure over 60 mole. Because the total ionic radius of [(Mg+2Ta)/3]$^{4+}$ was slightly bigger than one of [(Al+Ta)/2]$^{4+}$, the lattice parameters increased with an increase of (M $g_{1}$3/ T $a_{2}$3/) $O_2$ substitution. The measured dielectric constant increased with an increase of (M $g_{1}$3/ T $a_{2}$3/) $O_2$ substitution and coincided with dielectric mixing rule and the calculated dielectric constant with the molecular additivity rule. There were some differences between the measured and the calculated dielectric constant. The reason of the lowered dielectric constant comparing with the calculated one was compressed stress due to the electronic structure of tantalum.

Superconducting property in the Zn substituted MgC$Ni_3$ (Zn로 치환된 MgCN $i_3$의 초전도 특성)

  • 이용우;김진수;박민석;이성익;심지훈;민병일;최은집
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • We investigated superconducting property of ($Mg_{1-x}$$Zn_{x}$)$CNi_3$ (x=0,0.03, 0.06, 0.09, 0.12, 0.15, and 0.18) sample where Mg is substituted with Zn. The samples were synthesized us ins the solid state reaction method under As atmosphere. X -ray diffraction spectra show that the $MgCNi_3$ structure is maintained up to x=18. With increasing x, the lattice constant (or the Ni-Ni distance) decreases. Magnetic susceptibility measurement shows that $T_{c}$ decreases systematically with x and becomes ~2K at x =0.18. Surprisingly, the transition width remains sharp (~0.3K). Under some assumptions, we estimate the coupling constant in the McMillan formula as a function of x which we interpret in terms of the BCS theory.y.y.y.

  • PDF

Enhanced dielectric properties of $(Ba,Sr)TiO_{3}$ thin films applicable to tunable microwave devices (Tunable microwave device에 사용될 수 있는 $(Ba,Sr)TiO_{3}$ 박막의 유전특성 향상에 관한 연구)

  • Park, Bae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.73-76
    • /
    • 2001
  • We deposited epitaxial $Ba_{0.6}Sr_{0.4}TiO_{3}(BST)$ films having thickness of 400 nm on MgO(001) substrates, where a 10 nm thick $Ba_{1-x}Sr_{x}TiO_{3}$ (x = 0.1 - 0.7) interlayer was inserted between BST and MgO to manipulate the stress of the BST films. Since the main difference of those epitaxial BST films was the lattice constant of the interlayers, we were very successful in controlling the stress of the BST films. BST films under small tensile stress showed larger dielectric constant than that without stress as well as those under compressive stress. Stress relaxation was investigated using epitaxial BST films with various thicknesses grown on different interlayers. For BST films grown on $Ba_{0.7}Sr_{0.3}TiO_{3}$ interlayers, the critical thickness was about 600 nm. On the other hand, the critical thickness of single-layer BST film was less than 100 nm.

  • PDF

Enhanced dielectric properties of (Ba.Sr)$TiO_3$ thin films applicable to tunable microwave devices (Tunable microwave device에 사용될 수 있는 (Ba,Sr)$TiO_3$ 박막의 유전특성 향상에 관한 연구)

  • 박배호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.73-76
    • /
    • 2001
  • We deposited epitaxial $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) films having thickness of 400 nm on MgO(001) substrates, where a 10 nm thick $Ba_{1-x}$S $r_{x}$Ti $O_3$(x=0.1-0.7) interlayer was inserted between BST and MgO to manipulate the stress of the BST films. Since the main difference of those epitaxial BST films was the lattice constant of the interlayers, we were very successful in controlling the stress of the BST films. BST films under small tensile stress showed larger dielectric constant than that without stress as well as those under compressive stress. Stress relaxation was investigated using epitaxial BST films with various thicknesses grown on different interlayers. For BST films grown on $Ba_{0.7}$S $r_{0.3}$Ti $O_3$ interlayers, the critical thickness was about 600 nm. On the other hand, the critical thickness of single-layer BST film was less than 100 nm.00 nm.m.m.m.

  • PDF

Structural and electrical properties of (Ba0.7Sr0.3)TiO3 thin films for the application of electro-caloric devices

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Choi, Seungkeun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2019
  • This study was conducted on the structural and electrical properties of (Ba0.7Sr0.3)TiO3 thin films prepared by the sol-gel and spin-coating methods in order to investigate their applicability to electrocaloric devices. All specimens showed a tetragonal crystal structure and lattice constants of a = 3.972 Å, c = 3.970 Å. The mean grain size of specimens sintered at 800 ℃ was about 30 nm, and the average thickness of 5 times coated specimens was 304~311 nm. In the specimen sintered at 750 ℃, The relative dielectric constant and loss of specimens measured at 20 ℃ were 230 and 0.130, respectively, while dependence of the dielectric constant on unit DC voltage was -8.163 %/V. The remanent polarization and coercive fields were 95.5 μC/㎠ and 161.3 kV/cm at 21 ℃, respectively. And, the highest electrocaloric property of 2.69 ℃ was observed when the electric field of 330 kV/cm was applied.

The Effect of ZnO Addition on the Electric Properties and Microstructure of $Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$Ceramics ($Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$계 세라믹스의 전기적 특성과 미세구조에 미치는 ZnO 첨가영향)

  • 김민재;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1108-1114
    • /
    • 1999
  • Microstructure and electrical properties of ZnO-doped (0-5 mol%) 0.05 Pb(Mn1/3Sb2/3)O3-0.95 PZT ceramics were investigated. Sintering temperature was decreased to 100$0^{\circ}C$ due to eutetic reaction between PbO and ZnO. Grain-size increased up to adding 1mol% ZnO and then decreased. Compositions of grain and grain-boundary were investigated by WDS. Lattice parameter was decreased with ZnO addition. Density increased with ZnO addition and reached to the maximum of 7.84(g/cm2) at 2 mol% ZnO. The effect of ZnO on electrical properties of PMS-PZT was investigated. At 3mol% ZnO addition electromechanical coupling factor(kp) was about 50% and relative dielectric constant($\varepsilon$33/$\varepsilon$0) was 997 Mechanical quality factor(Qm) decreased with ZnO addition. Lattice parameters and tetragonality(c/a) were measured to investigate relationship between the electric properties and substitution of Zn2+. At 3 mol% ZnO tetragonality was maximiged at c/a=1.0035 Curie temperature (Tc) decreased slightly with ZnO addition.

  • PDF