• Title/Summary/Keyword: Lath Tempered Martensite

Search Result 13, Processing Time 0.018 seconds

Microstructural and Mechanical Properties of Ta-bearing 9%Cr Ferritic/Martensitic Steels (탄탈륨 함유 9%Cr 페라이트/마르텐사이트 강의 미세조직 및 기계적 특성)

  • Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Hahn, Dohee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.209-216
    • /
    • 2009
  • It was evaluated that the microstructural and mechanical properties of Ta-bearing 9Cr-0.5Mo-2W ferritic/martensitic experimental steels. All the experimental steels showed the tempered martensitic microstructures, and $M_{23}C_6$ carbides, whose sizes were ranged from 200 to 300 nm, were easily observed at both boundaries of the prior austenite grain and the martensite lath. In addition, a relatively large Nb-rich MX carbonitrides were intermittently detected at the prior austenite grain boundaries, whereas a lot of Vrich MX carbonitrides, whose mean diameter was less than 50 nm, were observed randomly at both boundaries. Ta was mainly incorporated into the V-rich MX carbonitrides rather than the Nb-rich ones and their content was spanned from 5 to 20 at.%. Ta contents within the MX precipitates also increased as the content of Ta increased. Because the Ta addition into the steels would be attributed to the precipitation strengthening, solid solution strengthening and lath width reduction, it was shown that the mechanical properties, including hardness, tensile strength and creep rate of the 9%Cr-0.5Mo-2W steels were improved by the increase of Ta content. Especially, 9Cr-0.5Mo-2W-0.3V-0.05Nb-0.14Ta steel was revealed to be relatively excellent in the application for the SFR fuel cladding.

Microstructures and Mechanical Properties of Reduced-activation Ferritic/Martensitic (RAFM) Steels with Ti Substituted for Ta (Ta 첨가원소 대체 Ti 첨가형 저방사화 페라이트/마르텐사이트 강의 미세조직과 기계적 특성)

  • Seol, Woo-Kyoung;Lee, Chang-Hoon;Moon, Joonoh;Lee, Tae-Ho;Jang, Jae Hoon;Kang, Namhyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • The aim of this study is to examine a feasibility to substitute Ti for Ta in reduced activation ferritic/martensitic (RAFM) steel by comparing a Ti-added RAFM steel with a conventional Ta-added RAFM steel. The microstructures and mechanical properties of Ta-, and Ti-added RAFM steels were investigated and a relationship between microstructures and mechanical properties was considered based on quantitative analysis of precipitates in two RAFM steels. Ta-, and Ti-added RAFM steels were normalized at $1000{\sim}1040^{\circ}C$ for 30 min and tempered at $750^{\circ}C$ for 2 hr. Both RAFM steels had very similar microstructures, that is, typical tempered martensite with relatively coarse $M_{23}C_6$ carbides at boundaries of grain and lath, and fine MX precipitates inside laths. The MX precipitates were identified as TaC in Ta-added RAFM steel and TiC or (Ti, W)C in Ti-added RAFM steel, respectively. It is believed that these RAFM steels show similar tensile and Charpy impact properties due to similar microstructures. Precipitate hardening and brittle fracture strength calculated with quantitative analysis of precipitates elucidated well the similar behaviors on the tensile and Charpy impact properties of Ta-, and Ti-added RAFM steels.

A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation (초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구)

  • Joo Sungwook;Yoo Junghoon;Shin Keesam;Hur Sung Kang;Lee Je-Hyun;Suk Jin Ik;Kim Jeong Tae;Kim Byung Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.