• Title/Summary/Keyword: Lateral stress

Search Result 804, Processing Time 0.034 seconds

Overturning Resistance of Plain Concrete Piers in OSPG Railroad Bridges

  • Rhee, In-Kyu;Park, Joo-Nam;Choi, Eun-Soo
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The steel plate-girder bridges with concrete gravity piers have possibilities of overturning by lateral inertial force which can be reproduced by sudden earthquake attack. This paper explores an overturning mechanism of existing concrete gravity pier onto the sandy soil in the event of lateral push-over load by in-situ experimental observation. The in-situ push-over experiment for pier with earth anchors between spread footing and rock beds exhibits a reasonable enhancement of ductility against overturning. In unanchored system, a flexural crack at cold joint of concrete pier is not developed because of the over-turning of the pier. This leads a global instability (rotation) of pier-footing system with relatively low stresses in pier itself. While a lateral load is persistently increased in anchored system, the successive flexural cracking failure at cold joint is observed even after the local shear failure of soil due to redistribution of stress equilibrium between soil and pier structure as long as a tensile action of anchor cable is active.

  • PDF

Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

  • Kumar, Rajneesh;Devi, Shaloo
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.701-710
    • /
    • 2017
  • In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.

Structural Safety Evaluation of Stabbing System for Pre-Piling Jacket Substructure Considering Pile Construction Errors (파일의 시공오차를 고려한 스태빙시스템의 구조안전성 평가)

  • Youngcheol Oh;Jaeyong Ryoo;Daeyong Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.109-119
    • /
    • 2023
  • A structural safety evaluation was conducted for the stabbing system for the pre-piling jacket substructure currently being developed in South Korea, considering pile construction errors due to its lateral movement that may occur during construction in the ocean. Based on (1) the maximum stress generated by the stabbing system, (2) the maximum rotational displacement of the guide cone, and (3) the maximum stress generated by the horizontal hydraulic pressure cylinder, the structural safety of the stabbing system was examined under the initial loading condition and three possible load combinations during its construction. In order to evaluate the structural safety of the stabbing system, a concept of stress safety factor (= Yield stress / Max. Von-Mises stress) was used. It was found that the stabbing system considered in this study has a sufficient margin of safety.

Characteristics of stress-strain relations of confined rectangular sectional concrete elements with various lateral reinforcement ratios and cross-ties (횡철근비와 cross-tie가 다른 횡구속 사각단면 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Park, Tae-Soo;Sun, Chang-Ho;Kim, Ick-Hyun;Lee, Jong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • In order to achieve target ductility the stress-strain relation of confined concrete is indispensible. In this study the specimens with different transverse reinforcement ratios were tested. The test results were compared with empirical equations and the characteristics of confinement effect were investigated.

  • PDF

Investigation lateral deformation and failure characteristics of strip coal pillar in deep mining

  • Chen, Shaojie;Qu, Xiao;Yin, Dawei;Liu, Xingquan;Ma, Hongfa;Wang, Huaiyuan
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.421-428
    • /
    • 2018
  • In deep mining, the lateral deformation of strip coal pillar appears to be a new characteristic. In order to study the lateral deformation of coal-mass, a monitoring method and monitoring instrument were designed to investigate the lateral deformation of strip coal pillar in Tangkou Coalmine with the mining depth of over 1000 m. Because of without influence of repeated mining, the bedding sandstone roof is easy to break and the angle between maximum horizontal stress and the roadway is small, the maximum lateral deformation is only about 287 mm lower than the other pillars in the same coalmine. In deep mining, the energy accumulation and release cause a discontinuous damage in the heterogeneous coal-mass, and the lateral deformation of coal pillar shows discontinuity, step and mutation characters. These coal-masses not only show a higher plasticity but also the high brittleness at the same time, and its burst tendency is more obvious. According to the monitoring results and theoretical calculations, the yield zone of the coal pillar width is determined as 15.6 m. The monitoring results presented through this study are of great significance to the stability analysis and design of coal pillar.

Analytical Solution for the Ultimate Strength of Sandwich Panels under In-plane Compression and Lateral Pressure (조합 하중을 받은 샌드위치 패널의 최종강도 설계식 개발)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.535-546
    • /
    • 2019
  • The paper presents a closed-form analytical solution for the ultimate strength of sandwich panels with metal faces and an elastic isotropic core during combined in-plane compression and lateral pressure under clamped boundary condition. By using the principle of minimum potential energy, the stress distribution in the faces during uni-axial edge compression and constant lateral pressure was obtained. Then, the ultimate edge compression was derived on the basis that collapse occurs when yield has spread from the mid-length of the sides of the face plates to the center of the convex face plates. The results were validated by nonlinear finite element analysis. Because the solution is analytical and closed-form, it is rapid and efficient and is well-suited for use in practical structural design methods, including repetitive use in structural optimization. The solution applies for any elastic isotropic core material, but the application that stimulated this study was an elastomer-cored steel sandwich panel that had excellent energy absorbing and protective properties against fire, collisions, ballistic projectiles, and explosions.

Chronic Lateral Ankle Instability (만성 외측 발목 불안정)

  • Kim, Dae-Wook;Sung, Ki-Sun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2018
  • Chronic lateral ankle instability is a major complication of acute ankle sprains, which can cause discomfort in both daily and sports activity. In addition, it may result in degenerative changes to the ankle joint in the long term. An accurate diagnostic approach and successful treatment plan can be established based on a comprehensive understanding of the concept of functional and mechanical instability. The patients' history and correct physical examination would be the first and most important step. The hindfoot alignment, competence of the lateral ligaments, and proprioceptive function should be evaluated. Additional information can be gathered using standard and stress radiographs. In addition, concomitant pathologic conditions can be investigated by magnetic resonance imaging. Conservative rehabilitation composed of the range of motion, muscle strengthening, and proprioceptive exercise is the main treatment for functional instability and mechanical instability. Regarding the mechanical instability, surgical treatment can be considered for irresponsible patients after a sufficient period of rehabilitation. Anatomic repair (modified $Brostr{\ddot{o}}m$ operation) is regarded as the gold standard procedure. In cases with poor prognostic factors, an anatomical reconstruction or additional procedures can be chosen. For combined intra-articular pathologies, arthroscopic procedures should be conducted, and arthroscopic lateral ligament repair has recently been introduced. Regarding the postoperative management, early functional rehabilitation with short term immobilization is recommended.

Study on lateral resistance of steel-concrete composite drilled shafts by using 3D FEM (3차원 유한요소법을 이용한 강관합성 말뚝재료의 수평저항력 고찰)

  • Lee, Ju-Hyung;Shin, Hyu-Soung;Choi, Sang-Ho;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.683-690
    • /
    • 2008
  • Steel-concrete composite columns are popular for superstructures of bridges, and the outside steel attached to the shaft increases the shaft resistance due to confining concrete. In this study, lateral resistance of steel-concrete composite drilled shafts was evaluated quantitatively based on numerical analysis when steel casings are used as structural elements like composite columns. Ultimate lateral resistance of composite drilled shafts with various diameters was numerically calculated through 3D finite element analysis. For that, elasto-plastic model with perfectly plasticity is involved to capture the ultimate load. A commercial FEM program, MIDAS-GTS, is used in this study. Real field conditions of the West Coast, Korea were considered to set up the ground conditions and pile lengths required for this parametric studies. Detailed characteristics of the stress and displacement distributions are evaluated for better understanding the mechanisms of the composite shaft behavior.

  • PDF

Evaluation of the Knee Lateral Collateral Ligament Stability by Using the Digital Telometer (디지털 텔로메터를 이용한 무릎 외측측부인대의 안정성 평가)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.319-324
    • /
    • 2013
  • The purpose of the study was to evaluation of the knee lateral collateral ligament (LCL) stability of normal males and females in twenties by using digital telometer. The volunteer subjects agreed the research goal and were 31 normal adults(16 male: $21.1{\pm}1.5$ years, 15 female: $21.2{\pm}1.2$ years) who have not got any illness regarding their knee. X-ray images were taken varus stress on medial femorotibial joint space using by digital telometer, and grade of pain was surveyed. We measured the joint space width (JSW) in the digital radiology. As a result, the JSW of male group were $5.60{\pm}0.76$ mm and JSW of female group were $5.05{\pm}0.55$ mm (p=0.022) on the neutral state of the knee. Based on the result of varus stress on the knee, female group showed much widen than male group but it was not significant difference (p>0.05). When increased varus stress on the knee, all groups were felt pain from 17 daN to 19 daN. The result could be valuable when the varus stress on the LCL by using the digital telometer.

Evaluation of at Rest Lateral Stress Coefficient Influenced by Particle Condition (입자의 조건에 따른 정지토압계수 평가)

  • Lee, Jung-Hwoon;Lee, Dong-Ryeol;Yun, Tae-Sup;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.21-29
    • /
    • 2012
  • At-rest lateral stress coefficient that is used for the evaluation of geotechnical structures such as foundations and retaining walls plays a significant role in the analysis and design, as a state variable of in-situ stress condition. In the widely applied Jaky's Ko equation stress condition can be inferred from the internal friction angle obtainable from the laboratory experimentation whereas the eguation mares it challenging to evaluate the influences and criteria of particle characteristics which is essential for the application of friction angles in practices. Thus, this study experimentally explored the behaviors of Ko depending on the relative density, particle shape, and surface roughness effect during a range of loading stages. The Ko values of Jumumjin sand, glass beads, and etched glass beads were measured using a customized Ko device housing strain gauges during loading-unloading-reloading steps, and the effect of dominant factors on Ko is analyzed. Results show that the high Ko prevails for both round and angular specimens with low relative density and the surface roughness has a nominal effect. The angular particles exhibit low Ko for specimens with similar relative density. The characteristics of relevance between Ko and friction angles with varying relative density are also investigated based on the experimental results using empirical correlations and previously reported values.