• Title/Summary/Keyword: Lateral stability control

Search Result 188, Processing Time 0.025 seconds

3D FINITE ELEMENT ANALYSIS OF OVERDENTURE STABILITY AND STRESS DISTRIBUTION ON MANDIBULAR IMPLANT-RETAINED OVERDENTURE (하악 임플랜트 유지형 피개의치의 안정성과 하악골 응력분포에 대한 3차원 유한요소법적 연구)

  • Hong, Hae-Ryong;Choi, Dae-Gyun;Bak, Jin;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.633-643
    • /
    • 2007
  • Statement of problem: Recently there are on an increasing trend of using implants-especially in edentulous mandible of severly alveolar bone recessed. Purpose: The aim of this study was to analyze the displacement and stress distribution of various mandibular implant-retained overdenture models supported by two implants in interforaminal region under the occlusion scheme load. Material and method: FEA models were made by the 3D scanning of the edentulous mandibular dentiform. The three models were named as Model M1, M2, and M3 accord ing to the position of implants: M1, Lt. incisor area, M2, Canine area, and M3, 1st Premolar area. Inter-implant angulation model was named as M4. Conventional complete denture was named M5 and used as a control group. Ball implant and Gold matrice were used as a retentive anchors. The occlusion type loads were applied horizontally over each tooth. Results: 1. In mandibular implant retained overdenture Canine Protected Occlusion type load resulted in higher levels of stress to the implants and female matrices than other types of loads. 2. The overdenture model M1, with implants in lateral incisor areas resulted in lower stress concentration to the implants and female matrices than other models. 3. In mandibular implant retained overdenture the stresses of the implant and female matrice were lower in mesially inclined implant than these of parallel installed implant. Conclusion: Lateral incisor areas could be the best site for the implants in mandibular implant-retained overdenture. The mandibular implant retained overdenture models mentioned above showed to the lowest stress to the implants and female matrices.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

Characteristics of Static Balance in Patients With Adolescent Idiopathic Scoliosis

  • Shin, Seung-Sub;Woo, Young-Keun
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 2006
  • The purpose of this study was to compare the static balance of standing position between adolescent idiopathic scoliosis (AIS) and a normal group that were aged-matched. There were forty subjects included in this study. Twenty-seven healthy subjects (age, $13.9{\pm}1.2$ yrs; height, $161.9{\pm}7.5$ cm; weight, $52.2{\pm}7.7$ kg) and thirteen AIS subjects (age, $14.2{\pm}2.2$ yrs; height, $161.5{\pm}8.7$ cm; weight, $48.1{\pm}8.1$ kg) were participated in the study. The thirteen subjects in the AIS group had a major Cobb angle between $20.1^{\circ}$ and $49^{\circ}$. Each group was tested with the Balance Performance Monitor (BPM). The parameters for static balance were sway area, sway path, max velocity, mean balance, anterior-posterior angle, and left-right angle of each group with their eyes opened and again with their eyes closed. Both sides of the forward reach test and the lateral reach test were also performed on each group. Results from the BPM tested showed significantly increases in all parameters of static balance with those patients with AIS under the conditions where eyes were opened and closed. In the right and left forward reach test, there was no significant difference between normal and AIS groups. However, in the lateral reach test with right and left direction, there were significant differences between normal and AIS groups. For the normal subjects, there were significant differences in the parameters with sway path and anterior-posterior sway angle between the eyes opened and closed. However, there were no significant differences in the all parameters between eyes opened and closed for the AIS subjects. These results suggest that, balance programs could be used in the rehabilitation setting for intervention of AIS and evaluation of AIS. Further study is needed to measure many patients with AIS and other functional balance scales for clinical application.

  • PDF

Improvement of dynamic responses of a pedestrian bridge by utilizing decorative wind chimes

  • Liu, Wei-ya;Tang, Hai-jun;Yang, Xiaoyue;Xie, Jiming
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.317-323
    • /
    • 2020
  • A novel approach is presented to improve dynamic responses of a pedestrian bridge by utilizing decorative wind chimes. Through wind tunnel tests, it was verified that wind chimes can provide stabilization effects against flutter instability, especially at positive or negative wind angles of attack. At zero degrees of angle of attack, the wind chimes can change the flutter pattern from rapid divergence to gradual divergence. The decorative wind chimes can also provide damping effects to suppress the lateral sway motion of the bridge caused by pedestrian footfalls and wind forces. For this purpose, the swing frequency of the wind chimes should be about the same as the structural frequency, which can be achieved by adjusting the swing length of the wind chimes. The mass and the swing damping level are other two important and mutually interactive parameters in addition to the swing length. In general, 3% to 5% swing damping is necessary to achieve favorite results. In the study case, the equivalent damping level of the entire system can be increased from originally assumed 1% up to 5% by using optimized wind chimes.

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Study on the Dynamic Torsional Instability of a Thin Beam (비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구)

  • 박진선;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

Comparison of Wind Tunnel Test Results for Forward-Swept Wing Airplane at KARI LSWT and TsAGI T-102 (전진익형 항공기 모델에 대한 KARI LSWT와 TsAGI T-102 풍동시험결과 비교)

  • Cho, Tae-Hwan;Chung, Jin-Deog;Chang, Byeong-Hee;Lee, Jang-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.18-23
    • /
    • 2004
  • Wind tunnel test for Forward-Swept wing airplane model, a part of the Korea-Russia technical cooperation program has been conducted at both TsAGI T-102 and KARI LSWT. The results of TsAGI T-102, obtained by using a unique wire-suspension model support system, and KARI LSWT, used tripod and tandem strut arrangement configuration, are compared with various model conditions including control surface deflection such as flap, aileron, elevator and rudder. Good agreement in the value of drag-polar is observed between TsAGI T-102 and KARI LSWT data. The lateral and directional stability coefficients with rudder and aileron deflection represent a good agreement in both facility.

The Effects of Vibration Exercise after Modified Bröstrom Operation in Soccer Players with Ankle Instability

  • Kim, Sanghoon;Kim, Yangrae;Kim, Yongyoun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1791-1796
    • /
    • 2019
  • Background: Vibration exercise after ankle surgery improves proprioception and ankle muscle strength through vibration stimulation. Objective: To examine the effects of vibration exercise on the ankle stability. Design: Randomized controlled clinical trial (single blind) Methods: Twenty soccer players were randomly divided into experimental group and control group. The Vibration exercise program was conducted 12 weeks and 3 times a week. Ankle joint proprioceptive sensory test and Isokinetic muscle strength test were performed using Biodex system pro III to measure plantar flexion / dorsiflexion and eversion / inversion motion. Results: The result of isokinetic test of ankle joint is showed significant improvement in all measurement items, such as leg flexion, lateral flexion, external and internal muscle forces, compared to previous ones by performing vibration movements for 12 weeks. However, in the comparison group, plantar flexor ($30^{\circ}$), eversion muscle ($120^{\circ}$), inversion ($30^{\circ}$) of limb muscle strength were significantly improved compared with the previous phase; was no significant difference in dorsi-flexion. There was no significant difference between groups in all the items. Conclusions: In this study, we analyzed the effects of rehabilitation exercise on soccer players who had reconstructed with an ankle joint ligament injury through vibration exercise device. As a result, we could propose an effective exercise method to improve the ability, and confirmed the applicability as an appropriate exercise program to prevent ankle injuries and help quick return.

Development of Flight Control System for Gliding Guided Artillery Munition - Part I : Operational Concept and Navigation (유도형 활공 탄약 비행제어시스템 개발 Part I : 운용 개념 및 항법)

  • Lim, Seunghan;Pak, Changho;Cho, Changyeon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.221-228
    • /
    • 2014
  • In this paper, the operational concept and the navigation algorithms for the gliding guided artillery munition are studied. The gliding guided artillery munition has wings for gliding; therefore spin of the munition should be eliminated. The previous navigation algorithms assumed a spinning munition with constant angular velocity; hence, they cannot be applied for the gliding munition. Moreover, lateral stability becomes worse due to decrease of angular momentum. Therefore, side force should be controlled to improve the stability, and the munition should maneuver, then the previous navigation algorithms for typical fixed-wing aircraft cannot be applied. In this paper, we apply the previous navigation algorithms for the spinning munition. Spin is eliminated and wings are deployed based on the estimation results, and the advanced navigation algorithm for the non-spinning munition is introduced.

Immediately Effects of Static Stretching of the Ankle Plantar Flexor for 5 Minutes on Balance Control and Muscle Activity in Healthy Young Adults

  • Yoon, Sang-Hyuk;Lee, Jae-Won;Lee, Dongyeop;Hong, Ji-Heon;Yu, Jae-Ho;Kim, Jin-Seop;Kim, Seong-gil
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.272-277
    • /
    • 2021
  • Purpose: The purpose of this study is to confirm the effect of static stretching of the plantar flexor for 5 minutes on balance and ankle muscle activity when walking in young adults. Methods: This study experimented on 20 healthy college students without vestibular and musculoskeletal diseases. Subjects performed static stretching intervention of plantar flexor for 5 minutes on a stretch board set at 15° to 25° Balance was measured four times before intervention (pre), after intervention (post), 5 minutes after intervention (post 5 min), 10 minutes after intervention (post 10 min), and ankle muscle activity was measured during walking. For the analysis and post hoc analysis, one-way Repeated Measure ANOVA and Fisher's LSD (Last Significant Difference) was performed to find out the change in balance and the activity of ankle muscles before static stretching, pre, post, post 5 minutes rest, post 10 minutes rest. Results: There was no significant difference in weight distribution index (WDI) in balance, but stability index (ST) showed a significant difference, and there was also a significant difference in correlation pre, post, post 5min rest, post 10 minutes rest (p<0.05). There was no significant difference in ankle muscle activity during walking in Tibialis anterior (TA), Medial gastrocnemius (GM), and Lateral gastrocnemius (GL) (p>0.05). Conclusion: The stability index (ST) increased significantly immediately after static stretching and decreased after 5 minutes. After static stretching, at least 5 minutes of rest are required to restore balance.